El Niño- or La Niña-like climate change?

Abstract

The potential for the mean climate of the tropical Pacific to shift to more El Niño-like conditions as a result of human induced climate change is subject to a considerable degree of uncertainty. The complexity of the feedback processes, the wide range of responses of different atmosphere–ocean global circulation models (AOGCMs) and difficulties with model simulation of present day El Niño southern oscillation (ENSO), all complicate the picture. By examining the components of the climate-change response that projects onto the model pattern of ENSO variability in 20 AOGCMs submitted to the coupled model inter-comparison project (CMIP), it is shown that large-scale coupled atmosphere–ocean feedbacks associated with the present day ENSO also operate on longer climate-change time scales. By linking the realism of the simulation of present day ENSO variability in the models to their patterns of future mean El Niño-like or La Niña-like climate change, it is found that those models that have the largest ENSO-like climate change also have the poorest simulation of ENSO variability. The most likely scenario (p=0.59) in a model-skill-weighted histogram of CMIP models is for no trend towards either mean El Niño-like or La Niña-like conditions. However, there remains a small probability (p=0.16) for a change to El Niño-like conditions of the order of one standard El Niño per century in the 1% per year CO2 increase scenario.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Achutarao K, Sperber KR in collaboration with the CMIP modeling groups (2002) Simulation of the El Niño southern oscillation: results from the coupled model intercomparison project. Clim Dyn 19:191–209

    Article  Google Scholar 

  2. Allen MR, Stainforth DA (2002) Towards objective probabilistic climate forecasting. Nature 419:228

    Article  CAS  PubMed  Google Scholar 

  3. Basnett TA, Parker DE (1997) Development of the global mean sea level pressure data set GMSLP2. Hadley Centre Climate Research Technical Note CRTN 79

  4. Buizza R, Miller M, Palmer TN (1999) Stochastic representation of model uncertainties in the ECMWF EPS. Quart J R Met Soc 125:2887–2908

    Article  Google Scholar 

  5. Cane MA, Clement AC, Kaplan A, Kushnir Y, Pozdnyakov D, Seager SE, Zebiak SE, Murtugudde R (1997) Twentieth century sea surface temperature trends. Science 275:957–960

    Article  CAS  PubMed  Google Scholar 

  6. Clement A, Seager R (1999) Climate and tropical oceans. J Clim 12:3383–3401

    Article  Google Scholar 

  7. Collins M (2000) Understanding uncertainties in the response of ENSO to greenhouse warming. Geophys Res Lett 27(21):3509–3513

    Article  CAS  Google Scholar 

  8. Corti S, Molteni F, Palmer TN (1999) Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398:799–802

    Article  CAS  Google Scholar 

  9. Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of the results of the coupled model intercomparison project. Global Planetary Change 37:103–133

    Article  Google Scholar 

  10. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell I (2000) Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  CAS  PubMed  Google Scholar 

  11. Cox PM, Betts RA, Collins M, Harris P, Huntingford C, Jones CD (2004) Amazon dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78:137–156. DOI: 10.1007/s00704-004-0049-4

    Article  Google Scholar 

  12. Cubasch U, Meehl GA et al (2001) The scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  13. Ebbesmeyer CC, Cayan DR, McLain DR, Nichols FH, Peterson DH, Redmond KT (1991). 1976 step in the Pacific climate: forty environmental changes between 1968–1975 and 1977–1984. In: Betancourt JL, Sharp VL (eds) Proceedings of the 7th annual Pacific climate (PACLIM) workshop, April 1990. California Department of Water Resources. Interagency Ecological Studies Program Technical Report 26

  14. Graham NE (1994) Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: observations and model results. Clim Dyn 10:135–162

    Article  Google Scholar 

  15. Guilderson TM, Schrag D (1998) Abrupt shift in subsurface temperature in the tropical Pacific associated with changes in El Niño. Science 281:240–243

    Article  CAS  PubMed  Google Scholar 

  16. Jin F-F, Hu Z-Z, Latif M, Bengtsson L, Roeckner E (2001) Dynamical and cloud–radiation feedbacks in El Niño and greenhouse warming. Geophys Res Lett 28:1539–1542

    Article  Google Scholar 

  17. Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J Climate 8:2181–2199

    Article  Google Scholar 

  18. Kuntson TR, Manabe S (1998) Model assessment of decadal variability and trends in the tropical Pacific ocean. J Climate 11:2273–2296

    Article  Google Scholar 

  19. Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J Climate 13:1809–1813

    Article  Google Scholar 

  20. Li T, Hogan TF, Chang C-P (2000) Dynamic and thermodynamic regulation of ocean warming. J Atmos Sci 57:3353–3365

    Article  Google Scholar 

  21. McDonald RE, Bleaken DG, Cresswell DR, Pope VD, Senior CA (2004) Tropical storms: representation and diagnosis in climate models and the impacts of climate change. Clim Dyn (in press). DOI:10.1007/s00382-004-0491-0

    Google Scholar 

  22. Meehl GA, Washington WM (1999) El Niño-like climate change in model with increased atmospheric CO2 concentrations. Nature 382:56–60

    Article  Google Scholar 

  23. Meehl GA, Collins W, Boville B, Kiehl JT, Wigley TML, Arblaster JM (2000) Response of the NCAR climate system model to increased CO2 and the role of physical processes. J Climate 13:1879–1898

    Article  Google Scholar 

  24. Noda A, Yoshimatsu K, Yukimoto S, Yamahuchi K, Yamaki S (1999) Relationship between natural variability and CO2-induced warming pattern: MRI AOGCM experiment. In: 10th symposium on global change studies, American Meteorological Society Publication

  25. Pierrehumbert RT (1995) Thermostats, radiator fins, and the local runaway greenhouse. J Atmos Sci 52:1784–1806

    Article  Google Scholar 

  26. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan, A (2004) Globally complete analyses of SST, sea-ice and night marine air temperature, 1871–2000. J Geophys Res (in press)

  27. Senior CA (1999) Comparison of mechanisms of cloud–climate feedbacks in a GCM. J Climate 12:1480–1489

    Article  Google Scholar 

  28. Sun, DZ, Liu, Z (1996) Dynamic ocean–atmosphere coupling: a thermostat for the tropics. Science 272:1148–1150

    CAS  PubMed  Google Scholar 

  29. Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature 398:694–696

    Article  CAS  Google Scholar 

  30. Trenberth KE, Hurrell JW (1994) Decadal atmosphere–ocean variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  31. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Met Soc 78:2539–2558

    Article  Google Scholar 

Download references

Acknowledgements

This study could not have been performed without the contributions of all the CMIP participants and the excellent work of the PCMDI CMIP team. This work was supported by the UK Department of the Environment, Food and Rural Affairs under Contract PECD/7/12/37 and by the UK National Environment Research Council under the COAPEC programme.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Matthew Collins.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Collins, M., The CMIP Modelling Groups (BMRC (Australia), CCC (Canada), CCSR/NIES (Japan), CERFACS (France), CSIRO (Austraila), MPI (Germany), GFDL (USA), GISS (USA), IAP (China), INM (Russia), LMD (France), MRI (Japan), NCAR (USA), NRL (USA), Hadley Centre (UK) and YNU (South Korea)). El Niño- or La Niña-like climate change?. Clim Dyn 24, 89–104 (2005). https://doi.org/10.1007/s00382-004-0478-x

Download citation

Keywords

  • Empirical Orthogonal Function
  • Couple Model Intercomparison Project
  • Trend Pattern
  • Couple Model Intercomparison Project
  • Model Share Component