Skip to main content

Advertisement

Log in

Simulated ENSO-tropical rainfall teleconnections in present-day and under enhanced greenhouse gases conditions

  • Original Articles
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

El-Niño/Southern Oscillation (ENSO) variability and its relationship with precipitation in the tropics and subtropics are analysed using the ARPEGE-OPA ocean-atmosphere coupled model. Three 150-year simulations are considered, differing by greenhouse gases (GHG) and aerosols concentrations. The first one has constant (1950 level) concentrations, and the two others follow observed values till 1999, then the SRES B2 scenario until 2099. The model is able to reproduce most present-day features characteristic of ENSO in the Pacific. It also displays ENSO as the leading mode of sea-surface temperature (SST) variability, with spatial patterns and explained variance both quite similar to the observation. A detailed analysis of its teleconnections with rainfall variability is carried out on a seasonal basis. Patterns for the last part of the twentieth century compare favourably with the observation, with the notable exception of parts of the Atlantic sector. The overall strong rainfall response arises from the strong interannual variability of simulated ENSO, and also suggests an ability to simulate atmospheric dynamics in a realistic way. In the future climate, the model does not exhibit major changes in the ENSO/rainfall teleconnections. However, on a regional basis, there is some evidence of strengthening (e.g., in parts of Southern Africa) and weakening (e.g., East Africa) in the course of the twenty-first century. In most cases, decadal swings in the correlations suggest that these alterations may partly reflect natural changes in the teleconnections with ENSO, long-term correlation trends (possibly GHG-induced) being comparatively weaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Mon Wea Rev 116:505–525

    Article  Google Scholar 

  • AchutaRao K, Sperber KR (2002) Simulation of the El Niño Southern Oscillation: results from the coupled model intercomparison project. Clim Dynam 19:191–209

    Article  Google Scholar 

  • Ashrit RG, Douville H, Rupa Kumar K (2003) Response of the Indian monsoon and ENSO-monsoon teleconnection to enhanced greenhouse effect in the CNRM coupled model. J Meteor Soc Japan 81(4):779–803

    Google Scholar 

  • Bacher A, Oberhuber JM, Roeckner E (1998) ENSO dynamics and seasonal cycle in the tropical Pacific as simulated by the ECHAM4/OPYC3 coupled general circulation model. Clim Dynam 14:431–450

    Article  Google Scholar 

  • Beltrando G (1990) Space-time variability of rainfall in April and October–November over East Africa during the period 1932–83. Int J Climatol 10:691–702

    Google Scholar 

  • Bigot S, Camberlin P, Moron V, Richard Y (1997) Structures spatiales de la variabilité des précipitations en Afrique: une transition climatique à la fin des années 1960? Comptes Rendus de l’Académie des Sciences, série IIa 324:181–188

    Google Scholar 

  • Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models. Tellus (Ser B) 47:281–300

    Article  Google Scholar 

  • Cai W, Whetton PH, Pittock AB (2001) Fluctuations of the relationship between ENSO and northeast Australian rainfall. Clim Dynam 17:421–432

    Google Scholar 

  • Camberlin P (1995) June–September rainfall in North-Eastern Africa and atmospheric signals over the tropics: a zonal perspective. Int J Climatol 15:773–783

    Google Scholar 

  • Camberlin P, Philippon N (2001) The stationarity of lead-lag teleconnections with East Africa rainfall and its incidence on seasonal predictability. In: Brunet-India M, Lopez-Bonillo D (eds) Detecting and modelling regional climate change. Springer, Berlin Heidelberg New York, pp 291–308

    Google Scholar 

  • Camberlin P, Philippon N (2002) The east African March-May rainy season: associated atmospheric dynamics and predictability over the 1968–97 period. J Climate 15(9):1002–1019

    Article  Google Scholar 

  • Camberlin P, Janicot S, Poccard I (2001) Seasonality and atmospheric dynamics of the teleconnection between african rainfall and tropical ocean surface temperature: Atlantic vs. ENSO. Int J Climatol 21:973–1005

    Article  Google Scholar 

  • Collins M (2000) The El-Niño Southern Oscillation in the second Hadley centre coupled model and its response to greenhouse warming. J Climate 13(7):1299–1312

    Article  Google Scholar 

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the IPCC. Cambridge University Press, pp 525–582

  • Curtis S, Adler R (2002) ENSO related precipitation anomalies from the tropics to the extratropics. CLIVAR Exchanges 7(1):8–9

    Google Scholar 

  • Dai A, Fung IY, Del Genio AD (1997) Surface observed global land precipitation variations during 1900–1988. J Climate 10:2943–2962

    Article  Google Scholar 

  • Davey MK, Huddleston M, Sperber KR, Braconnot P, Bryan F, Chen D, Colman RA, Cooper C, Cubasch U, Delecluse P, DeWitt D, Fairhead L, Flato G, Gordon C, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson TR, Latif M, Le Treut H, Li T, Manabe S, Mechoso CR, Meehl GA, Power SB, Roeckner E, Terray L, Vintzileos A, Voss R, Wang B, Washington VM, Yoshikawa I, Yu JY, Yukimoto S, Zebiak SE (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dynam 18(5):403–420

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dynam 10:249–266

    Article  Google Scholar 

  • Díaz A, Studzinski CD, Mechoso CR (1998) Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic oceans. J Climate 11:251–271

    Article  Google Scholar 

  • Douville H, Planton S, Royer JF, Stephenson DB, Tyteca S, Kergoat L, Lafont S, Betts RA (2000) Importance of vegetation feedbacks in doubled-CO2 time-slice experiments. J Geophys Res 105:14841–14861

    Article  CAS  Google Scholar 

  • Douville H, Chauvin F, Planton S, Royer JF, Salas-Melia D, Tyteca S (2002) Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Clim Dynam 20:45–68

    Article  Google Scholar 

  • Elliott WP, Angell JK (1988) Evidence for changes in Southern Oscillation relationships during the last 100 years. J Climate 1:729–737

    Article  Google Scholar 

  • Enfield DB (1996) Relationships of inter-american rainfall to tropical Atlantic and Pacific SST variability. Geophys Res Lett 23:3305–3308

    Article  Google Scholar 

  • Fauchereau N, Mulenga H, Richard Y, Camberlin P (2002) Intra-seasonal coherency of interannual rainfall variability in South Africa. S Afr J Sci (submitted)

  • Folland CK, Owen J, Ward N, Colman A (1991) Prediction of seasonal rainfall in the Sahel region using empirical and dynamical methods. J Forecasting 10:21–56

    Google Scholar 

  • Grimm A, Barros V, Doyle M (2000) Climate variability in southern south america associated with El Niño and La Niña events. J Climate 13:35–58

    Article  Google Scholar 

  • Hastenrath S, Heller L (1977) Dynamics of climate hazards in Northeast Brazil. Q J Roy Meteorol Soc 103:77–92

    Article  Google Scholar 

  • Hastenrath S, Nicklis A, Greischar L (1993) Atmospheric-hydrospheric mechanisms of climate anomalies in the western equatorial Indian ocean. J Geophys Res 98:20219–20235

    Google Scholar 

  • Hu ZZ, Bengtsson L, Roeckner E, Christoph M, Bacher A, Oberhuber JM (2001) Impact of global warming on the interannual and interdecadal climate modes in a coupled GCM. Clim Dynam 17:361–374

    Google Scholar 

  • Hulme M, Doherty RM, Ngara T, New MG, Lister D (2001) African climate change: 1900–2100. Climate Res 17:145–168

    Google Scholar 

  • IPCC (2000) Emissions scenarios. A special report of working group III of the intergovernmental panel on climate change In: Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner H-H , Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (eds). Cambridge University Press, Cambridge, pp 599

    Google Scholar 

  • Janicot S, Moron V, Fontaine B (1996) Sahel droughts and ENSO dynamics. Geophys Res Lett 23:515–518

    Article  Google Scholar 

  • Janicot S, Trzaska S, Poccard I (2001) Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Clim Dynam 18:303–320

    Article  Google Scholar 

  • Kawamura R (1994) A rotated EOF analysis of global sea surface temperature variability with interannual and interdecadal scales. J Physic Oceanogr 24:707–715

    Article  Google Scholar 

  • Kiladis GN, Diaz HF (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Climate 2:1069–1090

    Article  Google Scholar 

  • Knutson TR, Manabe S, Gu D (1997) Simulated ENSO in a global coupled ocean-atmosphere model: multidecadal amplitude modulation and CO2 sensitivity. J Climate 10(1):138–161

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian Monsoon and ENSO. Science 284:2156–2159

    Article  CAS  PubMed  Google Scholar 

  • Latif M, Sperber K, Arblaster J, Braconnot P, Chen D, Colman A, Cubasch U, Cooper C, Delecluse P, DeWitt D, Fairhead L, Flato G, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Le Treut H, Li T, Manabe S, Marti O, Mechoso C, Meehl G, Power S, Roeckner E, Sirven J, Terray L, Vintzileos A, Voss R, Wang B, Washington W, Yoshikawa I, Yu J, Zebiak S (2001) ENSIP: the El Niño simulation intercomparison project. Clim Dynam 18:255–276

    Article  Google Scholar 

  • Lau KM, Sheu PJ (1988) Annual cycle, Quasi-Biennal Oscillation, and Southern Oscillation in global precipitation. J Geophys Res 93(D9):10975–10988

    Google Scholar 

  • Mason SJ, Goddard L (2001) Probabilistic precipitation anomalies associated with ENSO. Bull Am Meteorol Soc 82:619–638

    Article  Google Scholar 

  • Meehl GA, Washington WM (1996) El Niño-like climate-change in a model with increased atmospheric Co2 concentrations. Nature 382(6586):56–60

    Article  CAS  Google Scholar 

  • Meehl GA, Branstator GW, Washington WM (1993) Tropical Pacific interannual variability and CO2 climate change. J Climate 6:42–63

    Article  Google Scholar 

  • Meehl GA, Gent PR, Arblaster JM, Otto-Bliesner BL, Brady EC, Craig AP (2001) Factors that affect the amplitude of El Niño in global coupled climate models. Clim Dynam 17:515–526

    Google Scholar 

  • Mestas-Nunez AM, Enfield DB (1999) Rotated global modes of non-ENSO sea surface temperature variability. J Climate 12:2734–2746

    Article  Google Scholar 

  • Moron V, Bigot S, Roucou P (1995) Rainfall variability in subequatorial America and Africa and relationships with the main sea-surface temperature modes (1951–1990). Int J Climatol 15:1297–1322

    Google Scholar 

  • Mutai CC, Ward MN (2000) East African rainfall and the tropical circulation/convection on intraseasonal to interannual timescales. J Climate 13:3915–3939

    Article  Google Scholar 

  • Mutai CC, Ward MN, Colman AW (1998) Towards the prediction of the East Africa short rains based on sea-surface temperature-atmosphere coupling. Int J Climatol 18:975–997

    Article  Google Scholar 

  • Nazemosadat MJ, Cordery I (2000) On the relationships between ENSO and autumn rainfall in Iran. Int J Climatol 20:47–61

    Article  Google Scholar 

  • Nicholson SE, Palao I (1993) A re-evaluation of rainfall variability in the Sahel; Part I: Characteristics of rainfall fluctuations. Int J Climatol 13:371–389

    Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Wea Rev 117:536–549

    Article  Google Scholar 

  • Ogallo LJ, Janowiak JE, Halpert MS (1988) Teleconnection between seasonal rainfall over East Africa and global sea-surface temperature anomalies. J Meteor Soc Japan 66–6(Series II):807–822

    Google Scholar 

  • Parthasarathy B, Kupa Kumar K, Munot AA (1991) Evidence of secular variations in Indian Monsoon rainfall circulation relationships. J Climate 4(9):927–938

    Article  Google Scholar 

  • Pisciottano GJ, Díaz AF, Mechoso CR (1994) El Niño-Southern Oscillation impact on rainfall in Uruguay. J Climate 7:1286–1302

    Article  Google Scholar 

  • Rasmusson EM, Arkin PA (1993) A global view of large-scale precipitation variability. J Climate 6(8):1495–1522

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1983) The relationship between Eastern Equatorial Pacific SST and rainfall over India and Sri Lanka. Mon Wea Rev 3:517–528

    Article  Google Scholar 

  • Rayner NA, Horton EB, Parker DE, Folland CK, Hackett RB (1996) Version 2.2 of the global sea-ice and sea surface temperature data set, 1903–1994. CRTN 74, available from Hadley Centre, Met Office, Bracknell

  • Richard Y, Trzaska S, Roucou P, Rouault M (2000) Modification of the southern African rainfall variability /El Niño Southern Oscillation relationship. Clim Dynam 16:886–895

    Google Scholar 

  • Richard Y, Fauchereau N, Poccard I, Rouault M, Trzaska S (2001) XXth century droughts in Southern Africa Spatial and temporal variability, teleconnections with oceanic and atmospheric conditions. Int J Climate 21:873–885

    Article  Google Scholar 

  • Rogers J. (1988) Precipitation variability over the Caribbean and tropical Americas associated with the Southern Oscillation. J Climate 1:172–182.

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon Wea Rev 114:2352–2362

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with El Niño/Southern Oscillation. Mon Wea Rev 115:1606–1626

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with high index phase of Southern Oscillation. J Climate 2:268–284

    Article  Google Scholar 

  • Roucou P, de Aragao JOR, Harzallah A, Fontaine B, Janicot S (1996) Vertical motion changes related to north-east Brazil rainfall variability: a AGCM simulation. Int J Climatol 16:879–891

    Article  Google Scholar 

  • Royer JF, Cariolle D, Chauvin F, Déqué M, Douville H, Hu RM, Planton S, Rascol A, Ricard JL, Salas y Melia D, Sevault F, Simon P, Somot S, Tyteca S, Terray L, Valcke S (2002) Simulation des changements climatiques au cours du XXIe siècle incluant l’ozone stratospherique (Simulation of climate changes during the 21st century including stratospheric ozone). C R Geosci 334(3):147–154

    Article  Google Scholar 

  • Salas Mélia D (2002) A global coupled sea-ice-ocean model. Ocean Model 4:137–172

    Article  Google Scholar 

  • Stone DA, Weaver AJ, Stouffer RJ (2001) Projection of climate change onto modes of atmospheric variability. J Climate 14:3551–3565

    Article  Google Scholar 

  • Terray L, Thual O, Belamari S, Déqué M, Dandin P, Delecluse P, Lévy C (1995) Climatology and interannual variability simulated by the ARPEGE-OPA coupled model. Clim Dynam 11:487–505

    Article  Google Scholar 

  • Tett S (1995) Simulation of El Niño-Southern Oscillation-Like Variability in a Global AOGCM and its response to CO2 Increase. J Climate 8(6):1473–1502

    Article  Google Scholar 

  • Timmermann A, Latif M, Grotzner A, Voss R (1999a) Modes of climate variability as simulated by a coupled general circulation model. Part I: ENSO-like climate variability and its low-frequency modulation. Clim Dynam 15:605–618

    Article  Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999b) Increased frequency in a climate model forced by future greenhouse warming. Nature 398(22):694–696

    Article  CAS  Google Scholar 

  • Trenberth KE, Caron JM (2000) The Southern Oscillation revisited: sea level pressures, surface temperatures, and precipitation. J Climate 13:4358–4365

    Article  Google Scholar 

  • Trzaska S, Moron V, Fontaine B (1996) Global atmospheric response to specific linear combinations of the main SST modes. Part I: numerical experiments and preliminary results. Ann Geophys 14:1066–1077

    Article  Google Scholar 

  • Trzaska S, Fauchereau N, Poccard I, Camberlin P, Richard Y, Philippon N (2002) Stability of the relationship between regional rainfall in Africa and ENSO. In: Ext. abstracts, 25th conference on hurricanes and tropical meteorology, San Diego 29 April–3 May 2002

  • Washington WM, Weatherly JM, Meehl GA, Semtner AJ, Bettge TW, Craig AP, Strand WG, Arblaster J, Wayland VB, James R, Zhang Y (2000) Parallel climate model (PCM) control and transient simulations. Clim Dynam 16:755–774

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Met Soc 78:2539–2558

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank LODYC for providing the ocean GCM, and the two anonymous reviewers for their useful comments on earlier versions of the manuscript. The help provided by J.F.Royer and S.Tyteca for data access and extraction is also gratefully acknowledged. This study was partly funded by a French Education and Research Ministry ACI grant (project n°67625) and by the European Commission Fifth Framework Program (PROMISE contract EVK2-CT-1999-00022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Camberlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camberlin, P., Chauvin, F., Douville, H. et al. Simulated ENSO-tropical rainfall teleconnections in present-day and under enhanced greenhouse gases conditions. Climate Dynamics 23, 641–657 (2004). https://doi.org/10.1007/s00382-004-0460-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0460-7

Keywords

Navigation