Skip to main content

Advertisement

Log in

Pediatric neuroimaging in pre-CT era: back to the future

  • Review
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Over the last half a century, diagnostic neuroimaging has made tremendous strides following the introduction of computerized tomography (CT) and subsequent magnetic resonance imaging (MR). Prior to that time, the neurological diagnosis was conducted with careful history taking, physical examinations, and invasive testing such as cerebral angiography, encephalography, and myelography. Techniques and contrast media for these tests have been refined and progressed over time. However, these invasive tests have diminished and are rarely used for daily practice in pediatric neurosurgery since the introduction of CT and MR. Nuclear brain scan and ultrasonography are non-invasive. A nuclear brain scan using radioactive tracers was used to demonstrate the laterality of the lesion without an intact blood–brain barrier, but was rarely performed after the CT era. On the other hand, improved ultrasonography made strides because of its portability and the lack of radiation exposure and sedation. It is often a first-line investigatory tool for neonatal evaluation. This article describes a review of developments and progresses of pediatric neuroimaging in the pre-CT era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bull J (1975) The changing face of neuroradiology over nearly 40 years. Neuroradiology 9:111–115

    Article  CAS  PubMed  Google Scholar 

  2. Tomita T, Larsen MB (1983) Calcified metastases to the brain in a child: case report. Neurosurgery 13:435–437

    Article  CAS  PubMed  Google Scholar 

  3. Lima A (1950) Cerebral angiography. Oxford University Press, London

    Google Scholar 

  4. Pelz DM, Fox AJ, Fernando Vinuela F, Lylyk P (1988) A comparison of lopamidol and lohexol in cerebral angiography. AJNR 9:1163–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Loman J, Myerson A (1936) Visualization of the cerebral vessels by direct intracarotid injection of thorium dioxide (Thoratrast). Am J Roentgenol 35:188–193

    Google Scholar 

  6. Schechter MM, de Gutierrez-Mahoney CG (1973) The evolution of vertebral angiography neuroradiology 5:157–164

    Article  CAS  PubMed  Google Scholar 

  7. Seldinger SI (1953) Catheter replacement of the needle in percutaneous arteriography: a new technique. Acta Radiol 39:368–376

    Article  CAS  PubMed  Google Scholar 

  8. Lindgren E (1956) Acta radiol (Stockh) 46:257

    Article  CAS  Google Scholar 

  9. Amundsen P, Dietrichson P, Enge I, Wilkinson K (1963) Cerebral angiography by catheterization-complications and side effects. Acta Radiol [Diagn] 1:164–172

  10. Amundsen P, Dugstad G, Noyes W (1967) Cerebral angiography via the femoral artery with particular reference to cerebrovascular disease. Acta Neurol Scand 22(Suppl 31):115

    Google Scholar 

  11. Schechter MM, de Outierrez-Mahoney CG (1973) The evolution of vertebral angiography. Neuroradiology 5:157–164

    Article  CAS  PubMed  Google Scholar 

  12. Raimondi AJ (1972) Pediatric neuroradiology. Saunders Philaderphia

  13. Harwood-Nash DC, Fitz CR (1976) Neuroradiology in infants and children. CV Mosby, Saint Louis

  14. Srinivasan VM, Hadley CC, Prablek M, LoPresti M, Chen SH, Peterson EC, Sweid A, Jabbour P, Young C, Levitt M, Osbun JW, Johnson J, Peter Kan P (2020) Feasibility and safety of trans radial access for pediatric neuro interventions. J NeuroIntervent Surg 12:893–896

  15. Heran MKS, Marshalleck F, Temple M, Grassi CJ et al (2010) Joint quality improvement guidelines for pediatric arterial access and arteriography: from the Societies of Interventional Radiology and Pediatric Radiology. Pediatr Radiol 40:237–250

    Article  PubMed  Google Scholar 

  16. Dandy WE (1918) Ventriculography following the injection of air into the cerebral ventricles. Ann Surg 68:5–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dandy WE (1919) Roentgenography of brain after the injection of air into the spinal canal. Ann Surg 70:397–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dandy WE (1920) Localization or elimination of cerebral tumors by ventriculography. Surg Gynecol Obstet 30:329–342

    Google Scholar 

  19. Dandy WE: The Brain. (1969) Hoeber medical division. Harper & Row, New York

  20. Bingel A (1921) Encephalographie eine method zur ro¨ntgenographischen darstellung des gehims. Chen darstellung des gehirns. Fortschr Rontgenstr Nuklearrned Erganzungsband 28:205–217

    Google Scholar 

  21. Muller J, Hermes M, Piepgras U (1995) Adolf Bingel, the second inventor of lumbar pneumoencephalography. AJNR Am J Neuroradiol 16:487–490

    CAS  PubMed  Google Scholar 

  22. Davidoff LM (1969) Dyke CG: pioneer neuroradiologist. Bull N Y Acad Med 45:665–680

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cushing H, Eisenhardt L (1938) Meningiomas. Their classification, regional behaviour, life history and surgical end results. Baltimore: CH Thomas; pp. 724

  24. Epstein (1969) BS: Pneumomyelography. JAMA 209:724

  25. Natelson SE, Sayers MP, Hunt WE (1972) Experiences with the technique and complications of meglumine iothalamate (Conray) ventriculography. J Neurol Neurosurg Psychiatry 35:264–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Halaburt H, Lester J (1973) Leptomeningeal changes following lumbar myelography with water-soluble contrast media (meglumine iothalamate and methiodal sodium). Iqeuroradiology 5:70–76

    Article  CAS  Google Scholar 

  27. Sovak M, Ranganathan R, Kerber CW, Bickford R, Alksne JF (1983) Lotrol, a new myelographic agent: 2. comparative electroencephalographic evaluation by spectrum analysis. AJNR 4:319–322

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sicard JA, Forestier J (1921) Méthode radiographique d’exploration de la cavité épidurale par le Lipiodol. Rev Neurol 37:1264–1266

    Google Scholar 

  29. Ramsey GH, French JD, Strain WH (1944) Iodinated organic compounds as contrast media for radiographic diagnoses. Radiology 43:236–240

    Article  Google Scholar 

  30. Steinhausen TB, Dungan CE, Furst JB, Plati JT, Smith SW, Darling AP et al (1944) Iodinated organic compounds as contrast media for radiographic diagnoses. Radiology 43:230–235

    Article  CAS  Google Scholar 

  31. Meador K, Hamilton WJ, El Gammal TAM, Demetropoulos KC, Nichols FT (1984) Irreversible neurologic complications of metrizamide myelography. Neurology 34:817–821

    Article  CAS  PubMed  Google Scholar 

  32. Sortland O, Nestvold K, Kloster R, Aandahl MH (1984) Comparison of iohexol with metrizamide in myelography. Radiology 14:121–122

    Article  Google Scholar 

  33. Skalpe IO, Bonneville JF, Grane P et al (1998) Myelography with a dimeric (iodixanol) and a monomeric (iohexol) contrast medium: a clinical multicentre comparative study. Eur Radiol 8:1054–1057

    Article  CAS  PubMed  Google Scholar 

  34. Ballantine HT Jr, Bolt RH, Hueter TF, Ludwig GD (1950) On the detection of intracranial pathology by ultrasound. Science 112:525–528

    Article  PubMed  Google Scholar 

  35. Tanaka K, Ito K, Wagai T (1965) The localization of brain tumors by ultrasonic techniques. A clinical review of 111 cases. J Neurosurg 23:135–147

    Article  CAS  PubMed  Google Scholar 

  36. de Vlieger M, Sterke A, de Molin CE, Van der Ven C (1963) Ultrasound for two-dimensional echoencephalography. Ultrasonics 1:148–151

    Article  Google Scholar 

  37. Bobcock DS, Han BK, LeQuesne GW (1980) B-mode gray scale ultrasound of the head in the newborn and young infant. AJR 134:457–468

    Article  Google Scholar 

  38. Brinker A, Taveras J (1966) Ultrasound cross-sectional pictures of the head. Acta Radiol 5:745–753

    CAS  Google Scholar 

  39. Baba K, Okai T, Kozuma S et al (1997) Real-time processable three-dimensional US in obstetrics. Radiology 203:571

    Article  CAS  PubMed  Google Scholar 

  40. Garrett WJ, Kossoff G, Jones RFC (1975) Ultrasoniccross-sectional visualization of hydrocephalus in infants. Neuroradiology 8:279–288

    Article  Google Scholar 

  41. Babcock DS, Bokyung KH, LeQuesne GW (1980) B-mode ultraso nography of the head in the newborn and young infant. AJR 134:457–468

    Article  CAS  PubMed  Google Scholar 

  42. Shkolnik A (1975) B-mode scanning of the infant brain. A new approach case report. Craniopharyngioma J Clin Ultrasound 3:229–231

    Article  CAS  PubMed  Google Scholar 

  43. Shkolnik A, Tomita T, Raimondi AJ, Hahn YS, McLone DG (1983) Work in progress. Intraoperative Neurosurgical Ultrasound: Localization of Brain Tumors in Infants and Children. Radiology 148: 525 527

  44. Naidich TP, McLone DG, Shkolnik A, Fernbach SK (1983) Sonographic evaluation of caudal spine anomalies in children. AJNR 4:661–664

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Moore GE (1948) Use of radioactive diiodofluorescein in the diagnosis and localization of brain tumors. Science 107:569–571

    Article  CAS  PubMed  Google Scholar 

  46. Van Eck JHM (1966) Clinical value of isotope encephalography. J Neurol Neurosurg Psychiat 29:145–153

    Article  PubMed Central  Google Scholar 

  47. Conway JJ (2007) Quo Vadis Pediatric Nuclear Medicine. Semin Nucl Med 37:242–248

    Article  PubMed  Google Scholar 

  48. di Chiro G, Reames PM, Mattehws WB Jr (1964) RISA-ventriculography and RISA-cisternography. Neurology 14:185–185

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadanori Tomita.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomita, T. Pediatric neuroimaging in pre-CT era: back to the future. Childs Nerv Syst 39, 2595–2604 (2023). https://doi.org/10.1007/s00381-023-06018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-023-06018-8

Keywords

Navigation