Skip to main content

Advertisement

Log in

Histogenesis of intracranial germ cell tumors: primordial germ cell vs. embryonic stem cell

  • Review
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Intracranial germ cell tumor (iGCT) is a rare disorder and often occurs during childhood and adolescence. iGCTs are frequently localized in pineal region and hypothalamic–neurohypophyseal axis (HNA). In spite of well-established clinical and pathological entity, histogenesis of iGCTs remains unsettled. Current theories of histogenesis of iGCTs include germ cell theory (from primordial germ cells (PGCs) of aberrant migration) and stem cell theory (transformed embryonic stem (ES) cells). In order to comprehend the histogenesis, we revisit the origin, migration, and fate of the human PGCs, and their transformation processes to iGCT.

Discussion

In “germ cell theory,” transformation of ectopic PGCs to iGCT is complex and involves multiple transcription factors. Germinoma is derived from ectopic PGCs and is considered a prototype of all GCTs. Non-germinomatous germ cell tumors (NGGCTs) develop from more differentiated counterparts of embryonic and extra-embryonic tissues. However, there is a distinct genomic/epigenomic landscape between germinoma and NGGCT. ES cells transformed from ectopic PGCs through molecular dysregulation or de-differentiation may become the source of iGCT. “Stem cell theory” is transformation of endogenous ES cells or primitive neural stem cell to iGCTs. It supports histological diversity of NGGCTs because of ES cell’s pluripotency. However, neural stem cells are abundantly present along the subependymal zone; therefore, it does not explain why iGCTs almost exclusively occur in pineal and HNA locations. Also, the vast difference of methylation status between germinoma and NGGCT makes it difficult to theorize all iGCTs derive from the common cellular linage.

Conclusion

Transformation of PGCs to ES cells is the most logical mechanism for histogenesis of iGCT. However, its detail remains an enigma and needs further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Available per request.

Abbreviations

ES:

Embryonic stem

GCT:

Germ cell tumor

HNA:

Hypothalamic-neurohypophyseal axis

iGCT:

Intracranial germ cell tumor

iPSC:

Induced pluripotent stem cell

NGGCT:

Non-germinomatous germ cell tumor

PGC:

Primordial germ cell

SCF:

Stem cell factor

wpc:

Week post-conception

References

  1. Plant AS, Chi SN, Frazier L (2016) Pediatric malignant germ cell tumors: a comparison of the neuro-oncology and solid tumor experience. Pediatr Blood Cancer 63:2086–2095

    Article  PubMed  Google Scholar 

  2. Mamsen LS, Brøchner CB, Byskov AG, Møllgard K (2012) The migration and loss of human primordial germ stem cells from the hind gut epithelium towards the gonadal ridge. Int J Dev Biol 56(10–12):771–778. https://doi.org/10.1387/ijdb.120202lm. PMID: 23417399

    Article  CAS  PubMed  Google Scholar 

  3. Esfahani DR, Alden T, Dipatri A, Xi G, Goldman S, Tomita T (2020) Pediatric suprasellar germ cell tumors: a clinical and radiographic review of solitary vs bifocal tumors and its therapeutic implications. Cancers 12(9):E2621. https://doi.org/10.3390/cancers12020516. PMID:32102285ISSN:2072-6694

    Article  CAS  Google Scholar 

  4. Arora RS, Alston RD, Eden TO, Geraci M, Birch JM (2012) Comparative incidence patterns and trends of gonadal and extragonadal germ cell tumors in England, 1979 to 2003. Cancer 1;118(17):4290–7. https://doi.org/10.1002/cncr.27403. Epub 2012 Jan 17

  5. Villano JL, Propp JM, Porter KR, Stewart AK, Valyi-Nagy LX, Engelhard HH, McCarthy BJ (2008) Malignant pineal germ-cell tumors: an analysis of cases from three tumor registries. Neuro Oncol 10(2):121–130

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fetcko K, Dey M (2018) Primary central nervous system germ cell tumors: a review and update. Med Res Arch 6(3). https://doi.org/10.18103/mra.v6i3.1719

  7. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsutani M, Sano K, Takakura K, Fujimaki T, Nakamura O, Funata N, Seto T (1997) Primary intracranial germ cell tumors: a clinical analysis of 153 histologically verified cases. J Neurosurg 86:446–455

    Article  CAS  PubMed  Google Scholar 

  9. Sano K (1999) Pathogenesis of intracranial germ cell tumors reconsidered. J Neurosurg 90:258–264

    Article  CAS  PubMed  Google Scholar 

  10. Tan C, Scotting PJ (2013) Stem cell research points the way to the cell of origin for intracranial germ cell tumours. J Pathol 229(1):4–11

    Article  CAS  PubMed  Google Scholar 

  11. De Felici M, Klinger FG, Campolo F, Balistreri CR, Barchi M, Dolci S (2021) To be or not to be a germ cell: the extragonadal germ cell tumor paradigm. Int J Mol Sci 22(11):5982. https://doi.org/10.3390/ijms22115982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohinata Y, Payer B, O’Carroll D, AncelinK OY, Sano M, Barton SC, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani MA (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436:207–213

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi T, Surani MA (2018) On the origin of the human germline. Development 145:1–4

    Article  Google Scholar 

  14. Mikedis MM, Downs KM (2014) Mouse primordial germ cells: a reappraisal. Int Rev Cell Mol Biol 309:1–57

    Article  CAS  PubMed  Google Scholar 

  15. Chen D, Sun N, Hou L, Kim R, Faith J, Aslanyan M, TaoY ZY, Fu J, Liu W et al (2019) Human primordial germ cells are specified from lineage-primed progenitors. Cell Rep 29:4568-4582.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gu Y, Runyan C, Shoemaker A, Surani A, Wylie C (2009) Steel factor controls primordial germ cell survival and motility from the time of their specification in the allantois, and provides a continuous niche throughout their migration. Development 136(8):1295–1303. https://doi.org/10.1242/dev.030619. Epub 2009 Mar 11 PMID: 19279135

    Article  CAS  PubMed  Google Scholar 

  17. Oosterhuis JW, Looijenga LHJ (2019) Human germ cell tumours from a developmental perspective. Nat Rev Cancer 19:522–537

    Article  CAS  PubMed  Google Scholar 

  18. Grimaldi C, Erez Raz E (2020) Germ cell migration—evolutionary issues and current understanding. Sem Cell Dev Biolog 100:152–159

    Article  CAS  Google Scholar 

  19. Molyneaux K, Wylie C (2004) Primordial germ cell migration. Int J Dev Biol 48(5–6):537–544. https://doi.org/10.1387/ijdb.041833km. PMID: 15349828

    Article  CAS  PubMed  Google Scholar 

  20. Laird J, Altshuler-Keylin S, Kissner MD, Zhou X, Anderson KV (2011) Ror2 enhances polarity and directional migration of primordial germ cells. PLoS Genet 7:e1002428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lejong M, Vanmuylder N, Choa-Duterre M, Louryan S (2020) A reviewed chronology of primordial germ cells migration in the chick embryo. Morphologie 104(344):64–69. https://doi.org/10.1016/j.morpho.2019.08.003. PMID: 31519429

  22. Høyer PE, Byskov AG, Møllgard K (2005) Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol Cell Endocrinol 234:1–10

    Article  PubMed  Google Scholar 

  23. Mollgard K, Jespersen A, Lutterodt MC, Yding Andersen C, Hoyer PE, Byskov A (2010) Human primordial germ cells migrate along nerve fibers and Schwann cells from the dorsal hind gut mesentery to the gonadal ridge. Mol Hum Reprod 16:621–631

    Article  CAS  PubMed  Google Scholar 

  24. Aalto A, Olguin-Olguin A, Raz E (2021) Zebrafish primordial germ cell migration. Front Cell Dev Biol 9:684460. https://doi.org/10.3389/fcell.2021.684460

    Article  PubMed  PubMed Central  Google Scholar 

  25. Paksa A, Bandemer J, Hoeckendorf B, Nitzan Razin N, Tarbashevich K, Minina S, Meyen D, Biundo A, Leidel SA, Peyrieras N, Gov NS, Keller PJ, Raz E (2016) Repulsive cues combined with physical barriers and cell–cell adhesion determine progenitor cell positioning during organogenesis. Nat Communi 7:11288. https://doi.org/10.1038/ncomms11288 | www.nature.com/naturecommunications

  26. Kim YM, Han JY (2018) The early development of germ cells in chicken. Int J Dev Biol 62(1–2–3):145–152. https://doi.org/10.1387/ijdb.170283jh. PMID: 29616722.

  27. De Felici M, Klinger FG (2015) Programmed cell death in mouse primordial germ cells. Int J Dev Biol 59:41–49

    Article  PubMed  Google Scholar 

  28. Runyan C, Schaible K, Molyneaux K, Wang Z, Levin L, Wylie C (2006) Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development 133:4861–4869

    Article  CAS  PubMed  Google Scholar 

  29. Nilsson S (2011) Comparative anatomy of the autonomic nervous system. Auton Neurosci 165:3–9

    Article  PubMed  Google Scholar 

  30. Wallace AS, Burns AJ (2005) Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res 319:367–382

    Article  PubMed  Google Scholar 

  31. Lumsden SC, Clarkson AN, Cakmak YO (2020) Neuromodulation of the pineal gland via electrical stimulation of its sympathetic innervation pathway. Front Neurosci 14:264–264

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cook MS, Munger SC, Nadeau H, Capel B (2011) Regulation of male germ cell cycle arrest and differentiation by DND1 is modulated by genetic background. Development 138:23–32

  33. Weber S, Eckert D, Nettersheim D, Gillis AJ, Schäfer S, Kuckenberg P, Ehlermann J, Werling U, Biermann K, Looijenga LH, Schorle H (2010) Critical function of AP-2 gamma/TCFAP2C in mouse embryonic germ cell maintenance. Biol Reprod 82(1):214–223. https://doi.org/10.1095/biolreprod.109.078717. PMID: 19776388

    Article  CAS  PubMed  Google Scholar 

  34. Gell JJ, Zhao J, Chen D, Hunt TJ, Clark AT (2018) PRDM14 is expressed in germ cell tumors with constitutive overexpression altering human germline differentiation and proliferation. Stem Cell Res 27:46–56. https://doi.org/10.1016/j.scr.2017.12.016.PMID:29324254;PMCID:PMC5858915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang L, Yamaguchi S, Burstein MD, Terashima K, Chang K, Ng HK et al (2014) Novel somatic and germline mutations in intracranial germ cell tumours. Nature 511(7508):241–245. https://doi.org/10.1038/nature13296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ebels I, Benson B, Matthews MJ (1973) Localization of a sheep pineal antigonadotropin. Anal Biochem 56:546–565

    Article  CAS  PubMed  Google Scholar 

  37. Jennings MT, Gelman R, Hochberg F (1985) Intracranial germ-cell tumors. Natural history and pathogenesis J Neurosurg 63:155–167

    CAS  PubMed  Google Scholar 

  38. Teilum G (1965) Classification of endodermal sinus tumour (Mesoblatoma vitellinum) and so-called “embryonal carcinoma” of the ovary. Acta Pathol Microbiol Scand 64:407–429

    Article  CAS  PubMed  Google Scholar 

  39. Phi JH, Wang KC, Kim SK (2018) Intracranial germ cell tumor in the molecular era. J Korean Neurosurg Soc 61(3):333–342. https://doi.org/10.3340/jkns.2018.0056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang X, Rong Zhang R, Ying Mao Y, Zhou L-F, Zhang C (2016) Recent advances in molecular biology and treatment strategies for intracranial germ cell tumors. World J Pediatr 12(3):275–282

    Article  PubMed  Google Scholar 

  41. Terashima K, Yu A, Chow WY, Hsu WC, Chen P, Wong S et al (2014) Genome-wide analysis of DNA copy number alterations and loss of heterozygosity in intracranial germ cell tumors. Pediatr Blood Cancer 61:593–600

    Article  PubMed  Google Scholar 

  42. Schulte SL, Waha A, Steiger B, Denkhaus D, Dörner E, Gabriele Calaminus G, Leuschner I, Pietsch T (2016) CNS germinomas are characterized by global demethylation, chromosomal instability and mutational activation of the Kit-. Ras/Raf/Erk- and Akt-pathways Oncotarget 7(34):55026–55042. https://doi.org/10.18632/oncotarget.10392

    Article  PubMed  Google Scholar 

  43. Fukushima S, Yamashita S, Kobayashi H (2017) Genome-wide methylation profiles in primary intracranial germ cell tumors indicate a primordial germ cell origin for germinomas. Acta Neuropathol 133:445–462. https://doi.org/10.1007/s00401-017-1673-2

    Article  CAS  PubMed  Google Scholar 

  44. Gkountela S, Li Z, Vincent JJ, Zhang KX, Chen A, Pellegrini M, Clark AT (2013) The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation. Nat Cell Biol 15:113–122

    Article  CAS  PubMed  Google Scholar 

  45. Scotting PJ (2006) Are cranial germ cell tumours really tumours of germ cells? Neuropathol Appl Neurobiol 32:569–574

    Article  CAS  PubMed  Google Scholar 

  46. de Jong J, Stoop H, Gillis AJ, van Gurp RJ, van de Geijn GJ, Boer Md, Hersmus R, Saunders PT, Anderson RA, Oosterhuis JW, Looijenga LH (2008) Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications. J Pathol 215(1):21–30. https://doi.org/10.1002/path.2332. PMID: 18348160

    Article  CAS  PubMed  Google Scholar 

  47. Aeckerle N, Drummer C, Debowski K, Viebahn C, Behr R (2015) Primordial germ cell development in the marmoset monkey as revealedby pluripotency factor expression: suggestion of a novel model of embryonic germ cell translocation. Mol Hum Reprod 21:66–80

  48. Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, Draper JS (2005) Embryonic stem (ES) cells and embryonalcarcinoma (EC) cells: Opposite sides of the same coin. Biochem Soc Trans 33:1526–1530

    Article  CAS  PubMed  Google Scholar 

  49. Sybirna A, Tang WWC, Smela MP, Dietmann S, Gruhn WH, Brosh R, Surani MA (2020) A critical role of PRDM14 in human primordial germ cell fate revealed by inducible degrons. Nat Commun 11:1282. https://doi.org/10.1038/s41467-020-15042-0

  50. Damjanov I, Andrews PW (2016) Teratomas produced from human pluripotent stem cells xenografted into immunodeficient mice - a histopathology atlas. Int J Dev Biol 60(10–11–12):337–419

  51. Murray MJ, Bailey S, Heinemann K, Mann J, Göbel UK, Saran F, Hale JP, Calaminus G, Nicholson JC (2017) Treatment and outcomes of UK and German patients with relapsed intracranial germ cell tumors following uniform first-line therapy: Relapsed intracranial germ cell tumors. International J Cancer 141(3):621–635

    Article  CAS  Google Scholar 

  52. Abu-Arja MH, Osorio DS, Lassaletta A, Graham RT, Coven SL, Stanek JR, Bouffet E, Finlay LL, Abdelbaki MS (2022) Prognostic factors for patients with relapsed central nervous system nongerminomatous germ cell tumors. Pediatric Blood Cancer 69:e29365. https://doi.org/10.1002/pbc.29365

    Article  CAS  PubMed  Google Scholar 

  53. Manoranjan B, Garg N, Bakhshinyan D, Singh SK (2015) The role of stem cells in pediatric central nervous system malignancies. In Stem cell biology in neoplasms of the central nervous system (Ehtesham M, ed). Springer Cham Heidelberg New York Dordrecht London pp49–68

  54. Lee SH, Appleby V, Jeyapalan JN, Palmer RD, Nicholson JC, Sottile V, Gao E, Coleman N, Scotting PJ (2011) Variable methylation of the imprinted gene, SNRPN, supports a relationship between intracranial germ cell tumours and neural stem cells. J Neurooncol 101(3):419–428. https://doi.org/10.1007/s11060-010-0275-9. PMID: 20582452

    Article  CAS  PubMed  Google Scholar 

  55. Gillis AJ, Stoop H, Biermann K, van Gurp RJ, Swartzman E, Cribbes S et al (2011) Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis. Int J Androl 34(4 Pt 2):e160–e174

    Article  CAS  PubMed  Google Scholar 

  56. Oosterhuis JW, Stoop H, Honecker F, Looijenga LH (2007) Why human extragonadal germ cell tumours occur in the midline of the body: old concepts, new perspectives. Int J Androl 30(4):256–63; discussion 263–4. https://doi.org/10.1111/j.1365-2605.2007.00793.x. PMID: 17705807

  57. Ilcus C, Silaghi H, Georgescu CE, Georgiu C, Ciurea AI, Nicoara SD, Silaghi CA (2021) Molecular pathology and targeted therapies for personalized management of central nervous system germinoma. J Pers Med 11:661. https://doi.org/10.3390/jpm11070661

  58. Ichimura K, Fukushima S, Totoki Y, Matsushita Y, Otsuka A, Tomiyama A, Niwa T, Takami H, Nakamura T, Suzuki T et al (2016) Recurrent neomorphic mutations of MTOR in central nervous system and testicular germ cell tumors may be targeted for therapy. Acta Neuropathol 131:889–901

    Article  CAS  PubMed  Google Scholar 

  59. Országhová Z, Kalavska K, Michal Mego M, Michal Chovanec M (2022) Overcoming chemotherapy resistance in germ cell tumors. Biomedicines 2022(10):972. https://doi.org/10.3390/biomedicines10050972

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Tadanori Tomita is endowed by Yeager Professorship of Pediatric Neurosurgery.

Author information

Authors and Affiliations

Authors

Contributions

Emma L. Burnham and Tadanori Tomita reviewed pertinent articles in the literature. Emma L. Burnham and Tadanori Tomita wrote the manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tadanori Tomita.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnham, E.L., Tomita, T. Histogenesis of intracranial germ cell tumors: primordial germ cell vs. embryonic stem cell. Childs Nerv Syst 39, 359–368 (2023). https://doi.org/10.1007/s00381-022-05808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-022-05808-w

Keywords

Navigation