Skip to main content


Log in

The evolving landscape of pilocytic astrocytoma: a bibliometric analysis of the top-100 most cited publications

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript



Pilocytic astrocytomas are the most common low-grade glioma of the central nervous system that typically occurs in children, and much research has been dedicated to characterizing their molecular features and clinical courses. We provide an overview of the current literature through the use of a bibliometric analysis of the top 100 most cited publications discussing pilocytic astrocytomas.


We identified the top 100 most cited publications discussing pilocytic astrocytomas. Articles were ranked based on the number of citations. Descriptive statistics and univariate analysis were used to determine any trends or significant differences in the data.


Of the top 100 articles, 50 were basic science (50%), 34 were clinical (34%), and 16 were review (16%). The number of citations ranged from 79 to 921, with 123 being the median. The US had the most first authors and principal authors (n = 53 and n = 54, respectively). Years of publication had a left-skewed distribution and peaked during 2011 with 12 articles published in that year. Sixty percent of basic science articles investigated BRAF/MAPK pathways, while 67.6% of clinical articles focused on evaluating treatment options for pilocytic astrocytomas. Compared to basic science and clinical articles, review articles were published more recently (p < 0.001), had fewer authors (p = 0.025) and were published in journals with higher impact factors (p = 0.022).


Research regarding pilocytic astrocytomas has increased over the past three decades. Future directions of research point towards employing targeted therapies and discovering additional cellular pathways contributing to disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others


  1. Cushing (1931) Experiences with the cerebellar astrocytomas : a critical review of 76 cases. Surg Gynecol Obstet 52:129–204

  2. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, Barnholtz-Sloan JS (2017) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol 19:v1–v88

    Article  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  Google Scholar 

  4. Burkhard C, Di Patre P-L, Schüler D, Schüler G, Yaşargil MG, Yonekawa Y, Lütolf UM, Kleihues P, Ohgaki H (2003) A population-based study of the incidence and survival rates in patients with pilocytic astrocytoma. J Neurosurg 98:1170–1174

    Article  Google Scholar 

  5. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, Orisme W, Punchihewa C, Parker M, Qaddoumi I, Boop FA, Lu C, Kandoth C, Ding L, Lee R, Huether R, Chen X, Hedlund E, Nagahawatte P, Rusch M, Boggs K, Cheng J, Becksfort J, Ma J, Song G, Li Y, Wei L, Wang J, Shurtleff S, Easton J, Zhao D, Fulton RS, Fulton LL, Dooling DJ, Vadodaria B, Mulder HL, Tang C, Ochoa K, Mullighan CG, Gajjar A, Kriwacki R, Sheer D, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Baker SJ, Ellison DW, the St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome P (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612

    Article  Google Scholar 

  6. Kiuru M, Busam KJ (2017) The NF1 gene in tumor syndromes and melanoma. Lab Invest 97:146–157

    Article  CAS  Google Scholar 

  7. Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG (2008) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67:878–887

    Article  CAS  Google Scholar 

  8. Collins VP, Jones DTW, Giannini C (2015) Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:775–788

    Article  CAS  Google Scholar 

  9. Deshmukh H, Yu J, Shaik J, MacDonald TJ, Perry A, Payton JE, Gutmann DH, Watson MA, Nagarajan R (2011) Identification of transcriptional regulatory networks specific to pilocytic astrocytoma. BMC Med Genomics 4:57

    Article  CAS  Google Scholar 

  10. Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, Toedt G, Wittmann A, Kratz C, Olbrich H, Ahmadi R, Thieme B, Joos S, Radlwimmer B, Kulozik A, Pietsch T, Herold-Mende C, Gnekow A, Reifenberger G, Korshunov A, Scheurlen W, Omran H, Lichter P (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118:1739–1749

    Article  CAS  Google Scholar 

  11. Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, Banerjee A, Packer RJ, Kilburn LB, Goldman S, Pollack IF, Qaddoumi I, Jakacki RI, Fisher PG, Dhall G, Baxter P, Kreissman SG, Stewart CF, Jones DTW, Pfister SM, Vezina G, Stern JS, Panigrahy A, Patay Z, Tamrazi B, Jones JY, Haque SS, Enterline DS, Cha S, Fisher MJ, Doyle LA, Smith M, Dunkel IJ, Fouladi M (2019) Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol 20:1011–1022

    Article  CAS  Google Scholar 

  12. Shaw EG, Daumas-Duport C, Scheithauer BW, Gilbertson DT, O’Fallon JR, Earle JD, Laws ER Jr, Okazaki H (1989) Radiation therapy in the management of low-grade supratentorial astrocytomas. J Neurosurg 70:853–861

    Article  CAS  Google Scholar 

  13. McNeill KA (2016) Epidemiology of brain tumors. Neurol Clin 34:981–998

    Article  Google Scholar 

  14. Katoh M (2019) Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat Rev Clin Oncol 16:105–122

    Article  CAS  Google Scholar 

  15. Horbinski C (2013) To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 72:2–7

    Article  Google Scholar 

  16. Jones DT, Hutter B, Jäger N, Korshunov A, Kool M, Warnatz HJ, Zichner T, Lambert SR, Ryzhova M, Quang DA, Fontebasso AM, Stütz AM, Hutter S, Zuckermann M, Sturm D, Gronych J, Lasitschka B, Schmidt S, Seker-Cin H, Witt H, Sultan M, Ralser M, Northcott PA, Hovestadt V, Bender S, Pfaff E, Stark S, Faury D, Schwartzentruber J, Majewski J, Weber UD, Zapatka M, Raeder B, Schlesner M, Worth CL, Bartholomae CC, von Kalle C, Imbusch CD, Radomski S, Lawerenz C, van Sluis P, Koster J, Volckmann R, Versteeg R, Lehrach H, Monoranu C, Winkler B, Unterberg A, Herold-Mende C, Milde T, Kulozik AE, Ebinger M, Schuhmann MU, Cho YJ, Pomeroy SL, von Deimling A, Witt O, Taylor MD, Wolf S, Karajannis MA, Eberhart CG, Scheurlen W, Hasselblatt M, Ligon KL, Kieran MW, Korbel JO, Yaspo ML, Brors B, Felsberg J, Reifenberger G, Collins VP, Jabado N, Eils R, Lichter P, Pfister SM (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45:927–932

    Article  CAS  Google Scholar 

  17. Brem SS, Bierman PJ, Black P, Blumenthal DT, Brem H, Chamberlain MC, Chiocca EA, DeAngelis LM, Fenstermaker RA, Fine HA, Friedman A, Glass J, Grossman SA, Heimberger AB, Junck L, Levin V, Loeffler JJ, Maor MH, Narayana A, Newton HB, Olivi A, Portnow J, Prados M, Raizer JJ, Rosenfeld SS, Shrieve DC, Sills AK Jr, Spence AM, Vrionis FD (2005) Central nervous system cancers: clinical practice guidelines in oncology. J Natl Compr Canc Netw 3:644–690

  18. Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. Lancet 392:432–446

    Article  Google Scholar 

  19. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, Schmieder K, Wesseling P, Mawrin C, Hasselblatt M, Louis DN, Korshunov A, Pfister S, Hartmann C, Paulus W, Reifenberger G, von Deimling A (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405

    Article  CAS  Google Scholar 

  20. Jones DTW, Kocialkowski S, Liu L, Pearson DM, Bäcklund LM, Ichimura K, Collins VP (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677

    Article  CAS  Google Scholar 

  21. Korshunov A, Meyer J, Capper D, Christians A, Remke M, Witt H, Pfister S, von Deimling A, Hartmann C (2009) Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118:401–405

    Article  CAS  Google Scholar 

  22. Reis GF, Bloomer MM, Perry A, Phillips JJ, Grenert JP, Karnezis AN, Tihan T (2013) Pilocytic astrocytomas of the optic nerve and their relation to pilocytic astrocytomas elsewhere in the central nervous system. Mod Pathol 26:1279–1287

    Article  CAS  Google Scholar 

  23. Tchoghandjian A, Fernandez C, Colin C, El Ayachi I, Voutsinos-Porche B, Fina F, Scavarda D, Piercecchi-Marti MD, Intagliata D, Ouafik L, Fraslon-Vanhulle C, Figarella-Branger D (2009) Pilocytic astrocytoma of the optic pathway: a tumour deriving from radial glia cells with a specific gene signature. Brain 132:1523–1535

    Article  Google Scholar 

  24. Behling F, Schittenhelm J (2019) Oncogenic BRAF alterations and their role in brain tumors. Cancers (Basel) 11

  25. Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF (2012) Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 14:777–789

    Article  CAS  Google Scholar 

  26. Christensen BC, Smith AA, Zheng S, Koestler DC, Houseman EA, Marsit CJ, Wiemels JL, Nelson HH, Karagas MR, Wrensch MR, Kelsey KT, Wiencke JK (2011) DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma. J Natl Cancer Inst 103:143–153

    Article  CAS  Google Scholar 

  27. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602

    Article  CAS  Google Scholar 

  28. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153

    Article  CAS  Google Scholar 

  29. Meyronet D, Esteban-Mader M, Bonnet C, Joly MO, Uro-Coste E, Amiel-Benouaich A, Forest F, Rousselot-Denis C, Burel-Vandenbos F, Bourg V, Guyotat J, Fenouil T, Jouvet A, Honnorat J, Ducray F (2017) Characteristics of H3 K27M-mutant gliomas in adults. Neuro Oncol 19:1127–1134

    Article  CAS  Google Scholar 

  30. Gielen GH, Gessi M, Hammes J, Kramm CM, Waha A, Pietsch T (2013) H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. Am J Clin Pathol 139:345–349

    Article  CAS  Google Scholar 

  31. Uhlmann K, Rohde K, Zeller C, Szymas J, Vogel S, Marczinek K, Thiel G, Nürnberg P, Laird PW (2003) Distinct methylation profiles of glioma subtypes. Int J Cancer 106:52–59

    Article  CAS  Google Scholar 

  32. Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJ, Perry A (2016) Diffuse midline gliomas with histone H3–K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580

    Article  CAS  Google Scholar 

  33. Bandopadhayay P, Bergthold G, London WB, Goumnerova LC, Morales La Madrid A, Marcus KJ, Guo D, Ullrich NJ, Robison NJ, Chi SN, Beroukhim R, Kieran MW, Manley PE (2014) Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the surveillance epidemiology and end results (SEER) database. Pediatr Blood Cancer 61:1173–1179

    Article  Google Scholar 

  34. Fernandez C, Figarella-Branger D, Girard N, Bouvier-Labit C, Gouvernet J, Paz Paredes A, Lena G (2003) Pilocytic astrocytomas in children: prognostic factors--a retrospective study of 80 cases. Neurosurgery 53: 544–553; discussion 554–545

  35. Wallner KE, Gonzales MF, Edwards MS, Wara WM, Sheline GE (1988) Treatment results of juvenile pilocytic astrocytoma. J Neurosurg 69:171–176

    Article  CAS  Google Scholar 

  36. Mamelak AN, Prados MD, Obana WG, Cogen PH, Edwards MS (1994) Treatment options and prognosis for multicentric juvenile pilocytic astrocytoma. J Neurosurg 81:24–30

    Article  CAS  Google Scholar 

  37. Lassaletta A, Scheinemann K, Zelcer SM, Hukin J, Wilson BA, Jabado N, Carret AS, Lafay-Cousin L, Larouche V, Hawkins CE, Pond GR, Poskitt K, Keene D, Johnston DL, Eisenstat DD, Krishnatry R, Mistry M, Arnoldo A, Ramaswamy V, Huang A, Bartels U, Tabori U, Bouffet E (2016) Phase II weekly vinblastine for chemotherapy-naïve children with progressive low-grade glioma: a Canadian pediatric brain tumor consortium study. J Clin Oncol 34:3537–3543

    Article  CAS  Google Scholar 

  38. Ishkanian A, Laperriere NJ, Xu W, Millar BA, Payne D, Mason W, Sahgal A (2011) Upfront observation versus radiation for adult pilocytic astrocytoma. Cancer 117:4070–4079

    Article  Google Scholar 

  39. Murphy ES, Parsai S, Kano H, Sheehan JP, Martinez-Alvarez R, Martinez-Moreno N, Kondziolka D, Simonova G, Liscak R, Mathieu D, Lee CC, Yang HC, Lee JY, McShane BJ, Fang F, Trifiletti DM, Sharma M, Barnett GH (2019) Outcomes of stereotactic radiosurgery for pilocytic astrocytoma: an international multiinstitutional study. J Neurosurg: 1–9

  40. Gunny RS, Hayward RD, Phipps KP, Harding BN, Saunders DE (2005) Spontaneous regression of residual low-grade cerebellar pilocytic astrocytomas in children. Pediatr Radiol 35:1086–1091

    Article  Google Scholar 

  41. Vladoiu MC, El-Hamamy I, Donovan LK, Farooq H, Holgado BL, Sundaravadanam Y, Ramaswamy V, Hendrikse LD, Kumar S, Mack SC, Lee JJY, Fong V, Juraschka K, Przelicki D, Michealraj A, Skowron P, Luu B, Suzuki H, Morrissy AS, Cavalli FMG, Garzia L, Daniels C, Wu X, Qazi MA, Singh SK, Chan JA, Marra MA, Malkin D, Dirks P, Heisler L, Pugh T, Ng K, Notta F, Thompson EM, Kleinman CL, Joyner AL, Jabado N, Stein L, Taylor MD (2019) Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature 572:67–73

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to David J. Daniels.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauman, M.M.J., Harrison, D.J., Giesken, M.B. et al. The evolving landscape of pilocytic astrocytoma: a bibliometric analysis of the top-100 most cited publications. Childs Nerv Syst 38, 1271–1280 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: