Skip to main content

Advertisement

Log in

Glutamate receptors in brain development

  • Review Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Brain development encompasses a number of processes including synaptogenesis, migration and synaptic plasticity. These activities are regulated by neurotransmitter receptors such as glutamate receptors. The development, activation and expression of these receptors vary during foetal and neonatal brain development. In this review, it has been shown that the stage or age of brain development, which correlates with the functional activities ongoing in the neonatal brain, determines the cellular distribution and the expression of glutamate receptors in the neonatal brain. Additionally, environmental factors including stress and alcohol may trigger the dysregulation of glutamate receptors during development. This deficit or dysregulation of glutamate receptors may result in developmental neuropathology, some of which may affect later development and normal functioning of the individual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds) (2013) Principles of neural science, 5th edn. McGraw-Hill Companies Inc., New York

    Google Scholar 

  2. Collingridge GL, Olsen RW, Peters J, Spedding M (2009) A nomenclature for ligand-gated ion channels. Neuropharmacology 56(1):1–11

    Article  CAS  Google Scholar 

  3. Burada AP, Vinnakota R, Kumar J (2020) The architecture of GluD2 ionotropic delta glutamate receptor elucidated by cryo-EM. J Struct Biol 211(2):107546

  4. Bury LAD, Sabo SL (2010) How it’s made: the synapse. Mol Interventions 10(5):282–292

    Article  CAS  Google Scholar 

  5. Fedder KN, Sabo SL (2015) On the role of glutamate in presynaptic development: possible contributions of presynaptic NMDA receptors. Biomolecules 5(4):3448–3466

    Article  CAS  Google Scholar 

  6. Waxman EA, Lynch DR (2005) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11(1):37–49

    Article  CAS  Google Scholar 

  7. Behuet S, Cremer JN, Cremer M, Palomero-Gallagher N, Zilles K, Amunts K (2019) Developmental changes of glutamate and GABA receptor densities in Wistar rats. Front Neuroanat 13

  8. Behar TN, Scott CA, Greene CL, Wen X, Smith SV, Maric D et al (1999) Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci 19(11):4449–4461

    Article  CAS  Google Scholar 

  9. Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260(5104):95–97

    Article  CAS  Google Scholar 

  10. Luhmann HJ, Fukuda A, Kilb W (2015) Control of cortical neuronal migration by glutamate and GABA. Front Cell Neurosci 9:1–15

    Article  Google Scholar 

  11. Strunecka A, Blaylock RL, Patocka J, Strunecky O (2018) Immunoexcitotoxicity as the central mechanism of etiopathology and treatment of autism spectrum disorders: a possible role of fluoride and aluminum. Surg Neurol Int 9(74):1–32

    Google Scholar 

  12. Paupard MC, Friedman LK, Zukin RS (1997) Developmental regulation and cell-specific expression of N-methyl-D- aspartate receptor splice variants in rat hippocampus. Neuroscience 79:399–409

    Article  CAS  Google Scholar 

  13. Szczurowska E, Mares P (2013) NMDA and AMPA receptors: development and status epilepticus. Physiol Res 62(Suppl. 1):S21–S38

    Article  CAS  Google Scholar 

  14. Waters KA, Machaalani R (2004) NMDA receptors in the developing brain and effects of noxious insults. Neurosignals 13(4):162–174

    Article  CAS  Google Scholar 

  15. Tarnok K, Czondor K, Jelitai M, Czirok A, Schlett K (2008) NMDA receptor NR2B subunit over-expression increases cerebellar granule cell migratory activity. J Neurochem 104(3):818–829

    CAS  PubMed  Google Scholar 

  16. Holopainen IE, Laurén HB (2012) Glutamate signaling in the pathophysiology and therapy of prenatal insults. Pharmacol Biochem Behav 100(4):825–834

    Article  CAS  Google Scholar 

  17. Pickard L, Noel J, Henley JM, Collingridge GL, Molnar E (2000) Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 20(21):7922–7931

    Article  CAS  Google Scholar 

  18. Franciosi S (2001) AMPA receptors: potential implications in development and disease. Cell Mol Life Sci 58:921–930

    Article  CAS  Google Scholar 

  19. Hamada S, Ogawa I, Yamasaki M, Kiyama Y, Kassai H, Watabe AM et al (2014) The glutamate receptor GluN2 subunit regulates synaptic trafficking of AMPA receptors in the neonatal mouse brain. Eur J Neurosci 40(8):3136–3146

    Article  Google Scholar 

  20. Ritter LM, Unis AS, Meador-Woodruff JH (2001) Ontogeny of ionotropic glutamate receptor expression in human fetal brain. Dev Brain Res 127:123–133

    Article  CAS  Google Scholar 

  21. Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11(9):379–387

    Article  CAS  Google Scholar 

  22. Gonzalez RA, Jaworski JN (1997) Alcohol and glutamate. Alcohol Res Health 21(2):120–127

    Google Scholar 

  23. Bale AS, Jackson MD, Krantz QT, Benignus VA, Bushnell PJ, Shafer TJ et al (2007) Evaluating the NMDA-glutamate receptor as a site of action for toluene, in vivo. Toxicol Sci 98(1):159–166

    Article  CAS  Google Scholar 

  24. Pellegrini-Giampietro DE, Gorter JA, Bennett MV, Zukin RS (1997) The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trend in Neuroscience 20(10):464–470

    Article  CAS  Google Scholar 

  25. Talos DM, Fishman RE, Park H, Folkerth RD, Follett PL, Volpe JJ et al (2006) Developmental regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J Comp Neurol 497(1):42–60

  26. Talos DM, Follett PL, Folkerth RD, Fishman RE, Trachtenberg FL, Volpe JJ et al (2006) Developmental regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex. J Comp Neurol 497(1):61–77

  27. Pandey SP, Rai R, Gaur P, Prasad S (2015) Development- and age-related alterations in the expression of AMPA receptor subunit GluR2 and its trafficking proteins in the hippocampus of male mouse brain. Biogerontology 16:317–328

    Article  CAS  Google Scholar 

  28. Kumar SS, Bacci A, Kharazia V, Huguenard JR (2002) A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J Neurosci 22(8):3005–3015

    Article  CAS  Google Scholar 

  29. Morrow CE, Culbertson JL, Accornero VH, Xue L, Anthony JC, Bandstra ES (2006) Learning disabilities and intellectual functioning in school-aged children with prenatal cocaine exposure. Dev Neuropsychol 30(3):905–931

    Article  Google Scholar 

  30. Bakshi K, Gennaro S, Chan CY, Kosciuk M, Liu J, Stucky A et al (2009) Prenatal cocaine reduces AMPA receptor synaptic expression through hyperphosphorylation of the synaptic anchoring protein GRIP. J Neurosci 29(19):6308–6319

    Article  CAS  Google Scholar 

  31. Lauri SE, Segerstråle M, Vesikansa A, Maingret F, Mulle C, Collingridge GL et al (2005) Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus. J Neurosci 25(18):4473–4484

    Article  CAS  Google Scholar 

  32. Bahn S, Volk B, Wisden W (1994) Kainate receptor gene expression in the developing rat brain. J Neurosci 14(9):5525–5547

    Article  CAS  Google Scholar 

  33. Ryazantseva M, Englund J, Shintyapina A, Huupponen J, Shteinikov V, Pitkänen A et al (2020) Kainate receptors regulate development of glutamatergic synaptic circuitry in the rodent amygdala. eLife 9

  34. Jansson LC, Åkerman KE (2014) The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J Neural Transm 121(8):819–836

    Article  CAS  Google Scholar 

  35. Sacaan AI, Schoepp DD (1992) Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damage. Neurosci Lett 1 139(1):77–82

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lawer Egbenya.

Ethics declarations

Conflict of interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egbenya, D.L., Aidoo, E. & Kyei, G. Glutamate receptors in brain development. Childs Nerv Syst 37, 2753–2758 (2021). https://doi.org/10.1007/s00381-021-05266-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-021-05266-w

Keywords

Navigation