Skip to main content

Genomics of human congenital hydrocephalus


Congenital hydrocephalus (CH), characterized by enlarged brain ventricles, is considered a disease of pathological cerebrospinal fluid (CSF) accumulation and, therefore, treated largely by neurosurgical CSF diversion. The persistence of ventriculomegaly and poor neurodevelopmental outcomes in some post-surgical patients highlights our limited knowledge of disease mechanisms. Recent whole-exome sequencing (WES) studies have shown that rare, damaging de novo and inherited mutations with large effect contribute to ~ 25% of sporadic CH. Interestingly, multiple CH genes are key regulators of neural stem cell growth and differentiation and converge in human transcriptional networks and cell types pertinent to fetal neurogliogenesis. These data implicate genetic disruption of early brain development as the primary pathomechanism in a substantial minority of patients with sporadic CH, shedding new light on human brain development and the pathogenesis of hydrocephalus. These data further suggest WES as a clinical tool with potential to re-classify CH according to a molecular nomenclature of increased precision and utility for genetic counseling, outcome prognostication, and treatment stratification.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Simon TD et al (2008) Hospital care for children with hydrocephalus in the United States: utilization, charges, comorbidities, and deaths. J Neurosurg Pediatr 1(2):131–137

    Article  PubMed  Google Scholar 

  2. Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kahle KT et al (2016) Hydrocephalus in children. Lancet 387(10020):788–799

    Article  PubMed  Google Scholar 

  4. Tully HM, Dobyns WB (2014) Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur J Med Genet 57(8):359–368

    Article  PubMed  PubMed Central  Google Scholar 

  5. Munch TN et al (2012) Familial aggregation of congenital hydrocephalus in a nationwide cohort. Brain 135(Pt 8):2409–2415

    Article  PubMed  Google Scholar 

  6. Bondurant CP, Jimenez DF (1995) Epidemiology of cerebrospinal fluid shunting. Pediatr Neurosurg 23(5): p. 254–8; discussion 259

  7. Jones RF, Stening WA, Brydon M (1990) Endoscopic third ventriculostomy. Neurosurgery 26(1): p. 86–91; discussion 91–2

  8. Warf BC (2005) Comparison of endoscopic third ventriculostomy alone and combined with choroid plexus cauterization in infants younger than 1 year of age: a prospective study in 550 African children. J Neurosurg 103(6 Suppl):475–481

    PubMed  Google Scholar 

  9. Casey AT et al (1997) The long-term outlook for hydrocephalus in childhood. A ten-year cohort study of 155 patients. Pediatr Neurosurg 27(2): p. 63–70

  10. Lindquist B et al (2005) Learning disabilities in a population-based group of children with hydrocephalus. Acta Paediatr 94(7):878–883

    Article  PubMed  Google Scholar 

  11. Hoppe-Hirsch E et al (1998) Late outcome of the surgical treatment of hydrocephalus. Childs Nerv Syst 14(3):97–99

    Article  CAS  PubMed  Google Scholar 

  12. Bret P, Chazal J (1995) Chronic ("normal pressure") hydrocephalus in childhood and adolescence. A review of 16 cases and reappraisal of the syndrome. Childs Nerv Syst 11(12): p. 687–91

  13. Zhang J, Williams MA, Rigamonti D (2006) Genetics of human hydrocephalus. J Neurol 253(10):1255–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kousi M, Katsanis N (2016) The genetic basis of hydrocephalus. Annu Rev Neurosci 39:409–435

    Article  CAS  PubMed  Google Scholar 

  15. Wallmeier J et al (2019) De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am J Hum Genet 105(5):1030–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choi M et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106(45):19096–19101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang Y et al (2013) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med 369(16):1502–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. An JY et al (2018) Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362(6420)

  19. Shaheen R et al (2017) The genetic landscape of familial congenital hydrocephalus. Ann Neurol 81(6):890–897

    Article  CAS  PubMed  Google Scholar 

  20. Furey CG et al (2018) De novo mutation in genes regulating neural stem cell fate in human congenital hydrocephalus. Neuron 99(2):302–314e4

  21. Jin SC et al (2020) Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nat Med 26(11):1754–1765

  22. Al-Dosari MS et al (2013) Mutation inMPDZcauses severe congenital hydrocephalus. J Med Genet 50(1):54–58

    Article  CAS  PubMed  Google Scholar 

  23. Allocco AA et al (2019) Recessive inheritance of congenital hydrocephalus with other structural brain abnormalities caused by compound heterozygous mutations in ATP1A3. Front Cell Neurosci 13

  24. Feldner A et al (2017) Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med 9(7):890–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Al Mutairi F et al (2018) A mendelian form of neural tube defect caused by a de novo null variant in SMARCC1 in an identical twin. Ann Neurol 83(2):433–436

    Article  CAS  PubMed  Google Scholar 

  26. Ruggeri G et al (2018) Bi-allelic mutations of CCDC88C are a rare cause of severe congenital hydrocephalus. Am J Med Genet A 176(3):676–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ekici AB et al (2010) Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol 1(3):99–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drielsma A et al (2012) Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus. J Med Genet 49(11):708–712

    Article  CAS  PubMed  Google Scholar 

  29. Wallis M et al (2018) Surprisingly good outcome in antenatal diagnosis of severe hydrocephalus related to CCDC88C deficiency. Eur J Med Genet 61(4):189–196

    Article  PubMed  Google Scholar 

  30. Tsoi H et al (2014) A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia. J Med Genet 51(9):590–595

    Article  CAS  PubMed  Google Scholar 

  31. Oshita A et al (2003) Identification and characterization of a novel Dvl-binding protein that suppresses Wnt signalling pathway. Genes Cells 8(12):1005–1017

    Article  CAS  PubMed  Google Scholar 

  32. Law R et al (2014) Biallelic truncating mutations in FMN2, encoding the actin-regulatory protein Formin 2, cause nonsyndromic autosomal-recessive intellectual disability. Am J Hum Genet 95(6):721–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muller EA et al (2012) Microdeletion 9q22.3 syndrome includes metopic craniosynostosis, hydrocephalus, macrosomia, and developmental delay. Am J Med Genet A 158A(2): p. 391–9

  34. Yamada H et al (2020) A familial case of overgrowth syndrome caused by a 9q22.3 microdeletion in a mother and daughter. Eur J Med Genet 63(5): p. 103872

  35. Marigo V et al (1996) Biochemical evidence that patched is the Hedgehog receptor. Nature 384(6605):176–179

    Article  CAS  PubMed  Google Scholar 

  36. Stone DM et al (1996) The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384(6605):129–134

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Struhl G (1996) Dual roles for patched in sequestering and transducing Hedgehog. Cell 87(3):553–563

    Article  CAS  PubMed  Google Scholar 

  38. Taipale J et al (2000) Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406(6799):1005–1009

    Article  CAS  PubMed  Google Scholar 

  39. Gorlin RJ, Goltz RW (1960) Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. A syndrome. N Engl J Med 262:908–912

    Article  CAS  PubMed  Google Scholar 

  40. Wilson LC et al (2006) Patched mutations and hairy skin patches: a new sign in Gorlin syndrome. Am J Med Genet A 140(23):2625–2630

    Article  PubMed  Google Scholar 

  41. Ming JE et al (2002) Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 110(4):297–301

    Article  CAS  PubMed  Google Scholar 

  42. Ribeiro LA, Murray JC, Richieri-Costa A (2006) PTCH mutations in four Brazilian patients with holoprosencephaly and in one with holoprosencephaly-like features and normal MRI. Am J Med Genet A 140(23):2584–2586

    Article  PubMed  Google Scholar 

  43. Chassaing N et al (2016) Targeted resequencing identifies PTCH1 as a major contributor to ocular developmental anomalies and extends the SOX2 regulatory network. Genome Res 26(4):474–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Echelard Y et al (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75(7):1417–1430

    Article  CAS  PubMed  Google Scholar 

  45. Roelink H et al (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76(4):761–775

    Article  CAS  PubMed  Google Scholar 

  46. Bickers DS, Adams RD (1949) Hereditary stenosis of the aqueduct of Sylvius as a cause of congenital hydrocephalus. Brain 72(Pt. 2):246–262

    Article  CAS  PubMed  Google Scholar 

  47. Turner G et al (2003) Syndromic form of X-linked mental retardation with marked hypotonia in early life, severe mental handicap, and difficult adult behavior maps to Xp22. Am J Med Genet A 117A(3):245–250

    Article  PubMed  Google Scholar 

  48. Gohlich-Ratmann G et al (1998) Megalencephaly, mega corpus callosum, and complete lack of motor development: a previously undescribed syndrome. Am J Med Genet 79(3):161–167

    Article  CAS  PubMed  Google Scholar 

  49. Iafolla AK, McConkie-Rosell A, Chen YT (1991) VATER and hydrocephalus: distinct syndrome? Am J Med Genet 38(1):46–51

    Article  CAS  PubMed  Google Scholar 

  50. Saillour Y et al (2007) Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X-linked mental retardation with hydrocephalus and calcifications in basal ganglia. J Med Genet 44(11):739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cacciagli P et al (2014) AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). Eur J Hum Genet 22(3):363–368

    Article  CAS  PubMed  Google Scholar 

  52. Tarpey PS et al (2006) Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. Am J Hum Genet 79(6):1119–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kielar M et al (2014) Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci 17(7):923–933

    Article  CAS  PubMed  Google Scholar 

  54. Oegema R et al (2019) EML1-associated brain overgrowth syndrome with ribbon-like heterotopia. Am J Med Genet C Semin Med Genet 181(4):627–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Su J et al (2021) Novel compound heterozygous frameshift variants in WDR81 associated with congenital hydrocephalus 3 with brain anomalies: First Chinese prenatal case confirms WDR81 involvement. Mol Genet Genomic Med p. e1624

  56. Cavallin M et al (2017) WDR81 mutations cause extreme microcephaly and impair mitotic progression in human fibroblasts and Drosophila neural stem cells. Brain 140(10):2597–2609

    Article  PubMed  Google Scholar 

  57. Turkmen S et al (2006) Cerebellar hypoplasia and quadrupedal locomotion in humans as a recessive trait mapping to chromosome 17p. J Med Genet 43(5):461–464

    Article  CAS  PubMed  Google Scholar 

  58. Gulsuner S et al (2011) Homozygosity mapping and targeted genomic sequencing reveal the gene responsible for cerebellar hypoplasia and quadrupedal locomotion in a consanguineous kindred. Genome Res 21(12):1995–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Komara M et al (2016) Clinical and molecular delineation of dysequilibrium syndrome type 2 and profound sensorineural hearing loss in an inbred Arab family. Am J Med Genet A 170A(2):540–543

    Article  PubMed  Google Scholar 

  60. Schrander-Stumpel C et al (1990) MASA syndrome: new clinical features and linkage analysis using DNA probes. J Med Genet 27(11):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rosenthal A, Jouet M, Kenwrick S (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 2(2):107–112

    Article  CAS  PubMed  Google Scholar 

  62. Basel-Vanagaite L et al (2006) Expanding the phenotypic spectrum of L1CAM-associated disease. Clin Genet 69(5):414–419

    Article  CAS  PubMed  Google Scholar 

  63. Riviere JB et al (2012) De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 44(8):934–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mirzaa GM, Rivière J-B, Dobyns WB (2013) Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. Am J Med Genet C Semin Med Genet 163(2):122–130

    Article  CAS  Google Scholar 

  65. Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 4:127–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li L, Liu F, Ross AH (2003) PTEN regulation of neural development and CNS stem cells. J Cell Biochem 88(1):24–28

    Article  CAS  PubMed  Google Scholar 

  67. Yeung KS et al (2017) Identification of mutations in the PI3K-AKT-mTOR signalling pathway in patients with macrocephaly and developmental delay and/or autism. Mol Autism 8:66

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22

    Article  CAS  PubMed  Google Scholar 

  69. Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13(5):283–296

    Article  CAS  PubMed  Google Scholar 

  70. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ocana A et al (2014) Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: systematic review and meta-analysis. PLoS One 9(4):e95219

    Article  PubMed  PubMed Central  Google Scholar 

  72. Laes JF, Sauvage S, Ghitti G (2017) Tumor-biopsy stratification based on mTOR-pathway activity and functional mutations in the upstream genes PIK3CA and PTEN. Oncotarget 8(48):84426–84433

    Article  PubMed  PubMed Central  Google Scholar 

  73. Etchegaray A et al (2020) Prenatal genetic considerations in congenital ventriculomegaly and hydrocephalus. Childs Nerv Syst

  74. Jin SC et al (2019) SLC12A ion transporter mutations in sporadic and familial human congenital hydrocephalus. Mol Genet Genomic Med 7(9):e892

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sullivan W et al (2021) Exome sequencing as a potential diagnostic adjunct in sporadic congenital hydrocephalus. JAMA Pediatr 175(3):310–313

    Article  PubMed  Google Scholar 

  76. Madsen RR, Vanhaesebroeck B, Semple RK (2018) Cancer-associated PIK3CA mutations in overgrowth disorders. Trends Mol Med 24(10):856–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Milella M et al (2015) PTEN: Multiple functions in human malignant tumors. Front Oncol 5:24

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fryns JP, Spaepen A, Cassiman JJ, van den Berghe H (1991) X linked complicated spastic paraplegia, MASA syndrome, and X linked hydrocephalus owing to congenital stenosis of the aqueduct of Sylvius: variable expression of the same mutation at Xq28. J Med Genet 28(6):429-431.

  79. Ruiz JC, Cuppens H, Legius E, et al (1995) Mutations in L1-CAM in two families with X linked complicated spastic paraplegia, MASA syndrome, and HSAS. JMed Genet 32(7):549-552

  80. Okamoto N, Wada Y, Goto M (1997) Hydrocephalus and Hirschsprung's disease in a patient with a mutation of L1CAM. J Med Genet 34(8):670-671

  81. Bott L, Boute O, Mention K, Vinchon M, Boman F, Gottrand F (2004) Congenital idiopathic intestinal pseudo-obstruction and hydrocephalus with stenosis of theaqueduct of sylvius. Am J Med Genet A 130a(1):84-87

  82. Bianchine JW, Lewis RC, Jr (1974) The MASA syndrome: a new heritable mental retardation syndrome. Clin Genet 5(4):298-306

  83. Jouet M, Rosenthal A, Armstrong G, et al (1994) X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in theL1 gene. Nat Genet 7(3):402-407

  84. Kenwrick S, Jouet M, Donnai D (1996) X linked hydrocephalus and MASA syndrome. J Med Genet 33(1):59-65

  85. Vits L, Van Camp G, Coucke P, et al (1994) MASA syndrome is due to mutations in the neural cell adhesion gene L1CAM. Nat Genet 7(3):408-413

  86. Fransen E, Van Camp G, D'Hooge R, Vits L, Willems PJ (1998) Genotype-phenotype correlation in L1 associated diseases. J Med Genet 35(5):399-404

  87. Edwards JH (1961) The syndrome of sex-linked hydrocephalus. Arch Dis Child 36(189):486-493

  88. Mirzaa GM, Conway RL, Gripp KW, et al (2012) Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyriahydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am J Med Genet A 158a(2):269-291

  89. Mirzaa G, Dodge NN, Glass I, et al (2004) Megalencephaly and perisylvian polymicrogyria with postaxial polydactyly and hydrocephalus: a rare brainmalformation syndrome associated with mental retardation and seizures. Neuropediatrics 35(6):353-359

  90. Moore CA, Toriello HV, Abuelo DN, et al (1997) Macrocephaly-cutis marmorata telangiectatica congenita: a distinct disorder with developmental delay andconnective tissue abnormalities. Am J Med Genet 70(1):67-73

  91. Tohyama J, Akasaka N, Saito N, Yoshimura J, Nishiyama K, Kato M (2007) Megalencephaly and polymicrogyria with polydactyly syndrome. Pediatr Neurol 37(2):148-151

  92. Dagli AI, Stalker HJ, Williams CA (2008) A patient with the syndrome of megalencephaly, mega corpus callosum and complete lack of motor development. Am J Med Genet A 146a(2):204-207

  93. Hengst M, Tücke J, Zerres K, Blaum M, Häusler M (2010) Megalencephaly, mega corpus callosum, and complete lack of motor development: delineation of a rare syndrome. Am J Med Genet A 152a(9):2360-2364

  94. Clayton-Smith J, Kerr B, Brunner H, et al (1997) Macrocephaly with cutis marmorata, haemangioma and syndactyly--a distinctive overgrowth syndrome. Clin Dysmorphol 6(4):291-302

  95. Carcao M, Blaser SI, Grant RM, Weksberg R, Siegel-Bartelt J (1998) MRI findings in macrocephaly-cutis marmorata telangiectatica congenita. Am J Med Genet 76(2):165-167

  96. Vogels A, Devriendt K, Legius E, et al (1998) The macrocephaly-cutis marmorata telangiectatica congenita syndrome. Long-term follow-up data in 4 children andadolescents. Genet Couns 9(4):245-253

  97. Conway RL, Pressman BD, Dobyns WB, et al (2007) Neuroimaging findings in macrocephaly-capillary malformation: a longitudinal study of 17 patients. Am JMed Genet A 143a(24):2981-3008

  98. Gripp KW, Hopkins E, Vinkler C, et al (2009) Significant overlap and possible identity of macrocephaly capillary malformation and megalencephalypolymicrogyria-polydactyly hydrocephalus syndromes. Am J Med Genet A 149a(5):868-876

  99. Orloff MS, He X, Peterson C, et al (2013) Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am J Hum Genet 92(1):76-80

  100. López-Gutiérrez JC, Lapunzina P (2008) Capillary malformation of the lower lip, lymphatic malformation of the face and neck, asymmetry and partial/generalizedovergrowth (CLAPO): report of six cases of a new syndrome/association. Am J Med Genet A 146a(20):2583-2588

  101. Rodriguez-Laguna L, Ibañez K, Gordo G, et al (2018) CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the naturalhistory and phenotype. Genet Med 20(8):882-889

  102. Sapp JC, Turner JT, van de Kamp JM, van Dijk FS, Lowry RB, Biesecker LG (2007) Newly delineated syndrome of congenital lipomatous overgrowth, vascularmalformations, and epidermal nevi (CLOVE syndrome) in seven patients. Am J Med Genet A 143a(24):2944-2958

  103. Gucev ZS, Tasic V, Jancevska A, et al (2008) Congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE) syndrome: CNSmalformations and seizures may be a component of this disorder. Am J Med Genet A 146a(20):2688-2690

  104. Alomari AI (2009) Characterization of a distinct syndrome that associates complex truncal overgrowth, vascular, and acral anomalies: a descriptive study of 18cases of CLOVES syndrome. Clin Dysmorphol 18(1):1-7

  105. Lindhurst MJ, Parker VE, Payne F, et al (2012) Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. NatGenet 44(8):928-933

  106. Currarino G, Coln D, Votteler T (1981) Triad of anorectal, sacral, and presacral anomalies. AJR Am J Roentgenol 137(2):395-398

  107. O'Riordain DS, O'Connell PR, Kirwan WO (1991) Hereditary sacral agenesis with presacral mass and anorectal stenosis: the Currarino triad. Br JSurg 78(5):536-538

  108. Kim IS, Oh SY, Choi SJ, et al (2007) Clinical and genetic analysis of HLXB9 gene in Korean patients with Currarino syndrome. J Hum Genet 52(8):698-701

  109. Almubarak AO, Haq AU, Alzahrani I, Shail EA (2019) Lhermitte-Duclos Disease with Cervical Arteriovenous Fistula. J Neurol Surg A Cent Eur Neurosurg 80(2):134-137

  110. Browning MJ, Chandra A, Carbonaro V, Okkenhaug K, Barwell J (2015) Cowden's syndrome with immunodeficiency. J Med Genet 52(12):856-859

  111. Haibach H, Burns TW, Carlson HE, Burman KD, Deftos LJ (1992) Multiple hamartoma syndrome (Cowden's disease) associated with renal cell carcinoma andprimary neuroendocrine carcinoma of the skin (Merkel cell carcinoma). Am J Clin Pathol 97(5):705-712

  112. Bannayan GA (1971) Lipomatosis, angiomatosis, and macrencephalia. A previously undescribed congenital syndrome. Arch Pathol 92(1):1-5

  113. Hanssen AM, Werquin H, Suys E, Fryns JP (1993) Cowden syndrome: report of a large family with macrocephaly and increased severity of signs in subsequentgenerations. Clin Genet 44(6):281-286

  114. Ruschak PJ, Kauh YC, Luscombe HA (1981) Cowden's disease associated with immunodeficiency. Arch Dermatol 117(9):573-575

  115. Miles JH, Zonana J, McFarlane J, Aleck KA, Bawle E (1984) Macrocephaly with hamartomas: Bannayan-Zonana syndrome. Am J Med Genet 19(2):225-234

  116. Reardon W, Zhou XP, Eng C (2001) A novel germline mutation of the PTEN gene in a patient with macrocephaly, ventricular dilatation, and features of VATERassociation. J Med Genet 38(12):820-823

  117. Staal FJ, van der Luijt RB, Baert MR, et al (2002) A novel germline mutation of PTEN associated with brain tumours of multiple lineages. Br J Cancer 86(10):1586-1591

  118. Butler MG, Dasouki MJ, Zhou XP, et al (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTENtumour suppressor gene mutations. J Med Genet 42(4):318-321

  119. Herman GE, Butter E, Enrile B, Pastore M, Prior TW, Sommer A (2007) Increasing knowledge of PTEN germline mutations: Two additional patients with autismand macrocephaly. Am J Med Genet A 143a(6):589-593

  120. O'Roak BJ, Vives L, Fu W, et al (2012) Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338(6114):1619-1622

Download references

Author information

Authors and Affiliations



Adam J. Kundishora, Amrita K. Singh, Garrett Allington, and Ashley M. Dunbar designed the study; performed data collection, analysis, and interpretation; and drafted and revised the manuscript. Phan Q. Duy, Jian Ryou, and Sheng Chih Jin drafted and revised the manuscript. Kristopher T. Kahle, Adam J. Kundishora, and Sheng Chih Jin designed the study and conceptualized the framework, interpreted the data, and critically reviewed the manuscript draft and revisions. Seth L. Alper critically reviewed the manuscript draft revisions.

Corresponding author

Correspondence to Kristopher T. Kahle.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kundishora, A.J., Singh, A.K., Allington, G. et al. Genomics of human congenital hydrocephalus. Childs Nerv Syst 37, 3325–3340 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Congenital hydrocephalus
  • Clinical diagnosis
  • Neurodevelopmental disorders