Skip to main content

Advertisement

Log in

Shunt technology for infants and a lifetime

  • Annual Issue Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

The use of cerebrospinal fluid (CSF) shunts remains a fundamental therapeutic modality in the management of hydrocephalus. Nowadays, neurosurgeons have an arsenal of different shunt technologies on their hands, with several companies producing many different configurations of them. The greatest difficulty of treating a child with hydrocephalus is to deal with a brain that will enormously change its size and hydrodynamic conditions and a body that will multiply its height and weight in a short time. Detailed knowledge of the hydrodynamic properties of shunts is mandatory for any neurosurgeon and much more for those taking care of pediatric patients. It is necessary to know that these properties of the valve may influence the evolution of the patient after shunting and it is recognized that a patient physiology-specific valve selection may yield better outcomes and decrease complications. This article provides a summary of the most common available CSF valves and overdrainage control devices, their technology, and possible combinations. The objective is to offer a quick overview of the armamentarium to facilitate the recognition of the implanted device and improve the selection of the most suitable valve for each patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Aschoff A, Kremer P, Hashemi B, Kunze S (1999) The scientific history of hydrocephalus and its treatment. Neurosurg Rev 22(2–3):67–93. https://doi.org/10.1007/s101430050035

    Article  CAS  PubMed  Google Scholar 

  2. Miyake H (2016) Shunt devices for the treatment of adult hydrocephalus: recent progress and characteristics. Neurol Med Chir 56(5):274–283. https://doi.org/10.2176/nmc.ra.2015-0282

    Article  Google Scholar 

  3. Aschoff A (2017) In-depth view: functional characteristics of CSF shunt devices (pros and cons). In: di Rocco C, Pang DRJ (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-31512-6_26-1

    Chapter  Google Scholar 

  4. Boockvar JA, Loudon W, Sutton LN (2001) Development of the Spitz-Holter valve in Philadelphia. J Neurosurg 95(1):145–147. https://doi.org/10.3171/jns.2001.95.1.0145

    Article  CAS  PubMed  Google Scholar 

  5. Pinto FCG, Oliveira MF, Castro JPS, Morais JVR, Pinto FMG, Teixeira MJ (2020) Clinical performance of fixed-pressure Sphera Duo® hydrocephalus shunt. Arq Neuropsiquiatr 78(1):9–12. https://doi.org/10.1590/0004-282X20190135

    Article  PubMed  Google Scholar 

  6. Symss NP, Oi S (2015) Is there an ideal shunt? A panoramic view of 110 years in CSF diversions and shunt systems used for the treatment of hydrocephalus: from historical events to current trends. Childs Nerv Syst 31(2):191–202. https://doi.org/10.1007/s00381-014-2608-z

    Article  PubMed  Google Scholar 

  7. Thomson JM (1988) John Holter interviewed by John M. Thompson MD. Published 1988. https://www.youtube.com/watch?v=PNIQ7Eq86Dc

  8. Baru JS, Bloom DA, Muraszko K, Koop CE (2001) John Holter’s shunt. J Am Coll Surg 7515(00):79–85. https://doi.org/10.1016/s1072-7515(00)00743-2

    Article  Google Scholar 

  9. Cozzens JW, Chandler JP (1997) Increased risk of distal ventriculoperitoneal shunt obstruction associated with slit valves or distal slits in the peritoneal catheter. J Neurosurg 87(5):682–686. https://doi.org/10.3171/jns.1997.87.5.0682

    Article  CAS  PubMed  Google Scholar 

  10. Konar SK, Maiti TK, Bir SC, Kalakoti P, Nanda A (2015) Robert H. Pudenz (1911-1998) and Ventriculoatrial shunt: historical perspective. World Neurosurg 84(5):1437–1440. https://doi.org/10.1016/j.wneu.2015.05.080

    Article  PubMed  Google Scholar 

  11. Freimann FB, Kimura T, Stockhammer F, Schulz M, Rohde V, Thomale UW (2014) In vitro performance and principles of anti-siphoning devices. Acta Neurochir 156(11):2191–2199. https://doi.org/10.1007/s00701-014-2201-y

    Article  PubMed  Google Scholar 

  12. Gehlen M, Eklund A, Kurtcuoglu V, Malm J, Schmid Daners M (2017) Comparison of anti-siphon devices—how do they affect CSF dynamics in supine and upright posture? Acta Neurochir 159(8):1389–1397. https://doi.org/10.1007/s00701-017-3249-2

    Article  PubMed  Google Scholar 

  13. Drake JM, Sainte-Rose C (1995) The Shunt Book. Blackwell Science

  14. Aschoff A, Kremer P, Benesch C, Fruh K, Klank A, Kunze S (1995) Overdrainage and shunt technology. Childs Nerv Syst 11(4):193–202. https://doi.org/10.1007/bf00277653

    Article  CAS  PubMed  Google Scholar 

  15. Czosnyka Z, Czosnyka M, Pickard JD (1999) Hydrodynamic performance of a new siphon preventing device: the SiphonGuard. J Neurol Neurosurg Psichyatry 66:408–409. https://doi.org/10.1136/jnnp.66.3.408a

    Article  CAS  Google Scholar 

  16. Rohde V, Haberl EJ, Ludwig H, Thomale UW (2009) First experiences with an adjustable gravitational valve in childhood hydrocephalus: clinical article. J Neurosurg Pediatr 3(2):90–93. https://doi.org/10.3171/2008.11.PEDS08154

    Article  PubMed  Google Scholar 

  17. Fiss I, Röhrig P, Hore N et al (2020) In vitro performance of six combinations of adjustable differential pressure valves and fixed anti-siphon devices with and without vertical motion. Acta Neurochir 162(10):2421–2430. https://doi.org/10.1007/s00701-020-04519-y

    Article  CAS  PubMed  Google Scholar 

  18. Kehler U, Kiefer M, Eymann R et al (2015) PROSAIKA: a prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting. Clin Neurol Neurosurg 137:132–136. https://doi.org/10.1016/j.clineuro.2015.07.002

    Article  PubMed  Google Scholar 

  19. Tschan CA, Antes S, Huthmann A, Vulcu S, Oertel J, Wagner W (2014) Overcoming CSF overdrainage with the adjustable gravitational valve proSA. Acta Neurochir 156(4):767–776. https://doi.org/10.1007/s00701-013-1934-3

    Article  PubMed  Google Scholar 

  20. Hertle DN, Tilgner J, Fruh K et al (2010) Reversible occlusion (on−/off-) valves in shunted tumor patients. Neurosurg Rev 34(2):235–242. https://doi.org/10.1007/s10143-010-0297-y

    Article  PubMed  Google Scholar 

  21. Portnoy HD, Schulte RR, Fox JL, Croissant PD, Tripp L (1973) Anti-siphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas. J Neurosurg 38(6):729–738. https://doi.org/10.3171/jns.1973.38.6.0729

    Article  CAS  PubMed  Google Scholar 

  22. Anderson RCE, Walker ML, Viner JM, Kestle JRW (2004) Adjustment and malfunction of a programmable valve after exposure to toy magnets: case report. J Neurosurg 101(SUPPL. 2):222–225. https://doi.org/10.3171/ped.2004.101.2.0222

    Article  PubMed  Google Scholar 

  23. Czosnyka Z, Pickard JD, Czosnyka M (2012) Hydrodynamic properties of the Certas hydrocephalus shunt. J Neurosurg Pediatr 11(2):198–204. https://doi.org/10.3171/2012.10.peds12239

    Article  PubMed  Google Scholar 

  24. Ahn ES, Bookland M, Carson BS, Weingart JD, Jallo GI (2007) The strata programmable valve for shunt- dependent hydrocephalus: the pediatric experience at a single institution. Childs Nerv Syst 23(3):297–303. https://doi.org/10.1007/s00381-006-0236-y

    Article  PubMed  Google Scholar 

  25. Martínez-Lage JF, Almagro MJ, Sanchez Rincón I et al (2008) Management of neonatal hydrocephalus: feasibility of use and safety of two programmable (Sophy and Polaris) valves. Childs Nerv Syst 24(5):549–556. https://doi.org/10.1007/s00381-007-0512-5

    Article  PubMed  Google Scholar 

  26. Miethke GmbH & Co. https://play.google.com/store/apps/details?id=com.miethke.graviton&hl=es&gl=US

  27. Miethke GmbH & Co. https://apps.apple.com/us/app/miethke/id450290015

  28. Gruber RW, Roehrig B (2010) Prevention of ventricular catheter obstruction and slit ventricle syndrome by the prophylactic use of the Integra antisiphon device in shunt therapy for pediatric hypertensive hydrocephalus: a 25-year follow-up study: clinical article. J Neurosurg Pediatr 5(1):4–16. https://doi.org/10.3171/2008.7.17690

    Article  PubMed  Google Scholar 

  29. Miethke C, Affeld K (1994) A new valve for the treatment of hydrocephalus. Biomedizinische Technik/Biomed Eng 39(7–8):181–187. https://doi.org/10.1515/bmte.1994.39.7-8.181

    Article  CAS  Google Scholar 

  30. Sprung C, Miethke C, Trost HA, Lanksch WR, Stolke D (1996) The dual switch valve. A new hydrostatic valve for the treatment of hydrocephalus. Childs Nerv Syst 12(10):573–581. https://doi.org/10.1007/BF00261650

    Article  CAS  PubMed  Google Scholar 

  31. Poca MA, Gándara DF, Rosas K, Alcina A, López-Bermeo D, Sahuquillo J (2021) Considerations in the use of gravitational valves in the management of hydrocephalus. Some Lessons Learned with the Dual-Switch Valve. J Clin Med 10:246. https://doi.org/10.3390/jcm10020246

    Article  CAS  PubMed Central  Google Scholar 

  32. Meling TR, Egge A, Due-Tønnessen B (2005) The gravity-assisted Paedi-Gav valve in the treatment of pediatric hydrocephalus. Pediatr Neurosurg 41(1):8–14. https://doi.org/10.1159/000084859

    Article  PubMed  Google Scholar 

  33. Eymann R, Steudel WI, Kiefer M (2007) Pediatric gravitational shunts: initial results from a prospective study. J Neurosurg 106(3 SUPPL):179–184. https://doi.org/10.3171/ped.2007.106.3.179

    Article  PubMed  Google Scholar 

  34. Sprung C, Schlosser HG, Lemcke J et al (2010) The adjustable proGAV shunt: a prospective safety and reliability multicenter study. Neurosurgery. 66(3):465–474. https://doi.org/10.1227/01.NEU.0000365272.77634.6B

    Article  PubMed  Google Scholar 

  35. Kulkarni AV, Riva-Cambrin J, Butler J et al (2013) Outcomes of CSF shunting in children: comparison of hydrocephalus clinical research network cohort with historical controls. J Neurosurg Pediatr 12(4):334–338. https://doi.org/10.3171/2013.7.PEDS12637

    Article  PubMed  Google Scholar 

  36. Robinson S, Kaufman BA, Park TS (2002) Outcome analysis of initial neonatal shunts: does the valve make a difference? Pediatr Neurosurg 37(6):287–294. https://doi.org/10.1159/000066307

    Article  PubMed  Google Scholar 

  37. Thomale UW, Gebert AF, Haberl H, Schulz M (2013) Shunt survival rates by using the adjustable differential pressure valve combined with a gravitational unit (proGAV) in pediatric neurosurgery. Childs Nerv Syst 29(3):425–431. https://doi.org/10.1007/s00381-012-1956-9

    Article  PubMed  Google Scholar 

  38. Sainte-Rose C, Hooven MD, Hirsch J-F (1987) A new approach in the treatment of hydrocephalus. J Neurosurg 66(2):213–226. https://doi.org/10.3171/jns.1987.66.2.0213

    Article  CAS  PubMed  Google Scholar 

  39. Arnell K, Koskinen LOD, Malm J, Eklund A (2009) Evaluation of strata NSC and Codman Hakim adjustable cerebrospinal fluid shunts and their corresponding antisiphon devices: laboratory investigation. J Neurosurg Pediatr 3(3):166–172. https://doi.org/10.3171/2008.10.PEDS08118

    Article  PubMed  Google Scholar 

  40. Drake JM, Kestle JRW, Milner R et al (1998) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery. 43(2):294–305. https://doi.org/10.1097/00006123-199808000-00068

    Article  CAS  PubMed  Google Scholar 

  41. Czosnyka Z, Czosnyka M, Richards HK, Pickard JD (2002) Laboratory testing of hydrocephalus shunts - conclusion of the U.K. shunt evaluation Programme. Acta Neurochir 144(6):525–538. https://doi.org/10.1007/s00701-002-0922-9

    Article  CAS  PubMed  Google Scholar 

  42. Chari A, Czosnyka M, Richards HK, Pickard JD, Czosnyka ZH (2014) Hydrocephalus shunt technology: 20 years of experience from the Cambridge shunt evaluation laboratory - technical note. J Neurosurg 120(3):697–707. https://doi.org/10.3171/2013.11.JNS121895

    Article  PubMed  Google Scholar 

  43. Baird LC, Mazzola CA, Auguste KI, Klimo P, Flannery AM (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 5: effect of valve type on cerebrospinal fluid shunt efficacy. J Neurosurg Pediatr 14:35–43. https://doi.org/10.3171/2014.7.PEDS14325

    Article  PubMed  Google Scholar 

  44. Gutowski P, Gölz L, Rot S, Lemcke J, Thomale UW (2020) Gravitational shunt valves in hydrocephalus to challenge the sequelae of over-drainage. Exp Rev Med Dev 17(11):1155–1168. https://doi.org/10.1080/17434440.2020.1837622

    Article  CAS  Google Scholar 

  45. Kestle J, Drake J, Milner R et al (2000) Long-term follow-up data from the shunt design trial. Pediatr Neurosurg 33(5):230–236. https://doi.org/10.3390/000055960

    Article  CAS  PubMed  Google Scholar 

  46. Drake JM, Kestle JRW, Tuli S (2000) CSF Shunts 50 Years On-Past, Present and Future. Childs Nerv Syst 16(10–11):800–804. https://doi.org/10.1007/s003810000351

    Article  CAS  PubMed  Google Scholar 

  47. di Rocco C, Marchese E, Velardi F (1994) A survey of the first complication of newly implanted CSF shunt devices for the treatment of nontumoral hydrocephalus - cooperative survey of the 1991-1992 education committee of the ISPN. Childs Nerv Syst 10(5):321–327. https://doi.org/10.1007/BF00335171

    Article  PubMed  Google Scholar 

  48. Furlanetti L, Ballestero MFM, de Oliveira R (2020) Shunt technology in pediatric neurosurgery: current options and scientific evidence. Arch Pediatr Neurosurg 2(2(May–August)):e342020. https://doi.org/10.46900/apn.v2i2(may-august).34

    Article  Google Scholar 

  49. Kaestner S, Kruschat T, Nitzsche N, Deinsberger W (2009) Gravitational shunt units may cause under-drainage in bedridden patients. Acta Neurochir 151(3):217–221. https://doi.org/10.1007/s00701-009-0215-7

    Article  CAS  PubMed  Google Scholar 

  50. Hatlen TJ, Shurtleff DB, Loeser JD, Ojemann JG, Avellino AM, Ellenbogen RG (2012) Nonprogrammable and programmable cerebrospinal fluid shunt valves: a 5-year study - clinical article. J Neurosurg Pediatr 9(5):462–467. https://doi.org/10.3171/2012.1.PEDS10482

    Article  PubMed  Google Scholar 

  51. Garegnani L, Franco JVA, Ciapponi A, Garrote V, Vietto V, Portillo Medina SA (2020) Ventriculo-peritoneal shunting devices for hydrocephalus. Cochrane Database Syst Rev. 2020(6). https://doi.org/10.1002/14651858.CD012726.pub2

  52. Gebert AF, Schulz M, Haberl H, Thomale UW (2013) Adjustments in gravitational valves for the treatment of childhood hydrocephalus - a retrospective survey. Childs Nerv Syst 29(11):2019–2025. https://doi.org/10.1007/s00381-013-2160-2

    Article  PubMed  Google Scholar 

  53. McGirt MJ, Buck DW, Sciubba D et al (2007) Adjustable vs set-pressure valves decrease the risk of proximal shunt obstruction in the treatment of pediatric hydrocephalus. Childs Nerv Syst 23(3):289–295. https://doi.org/10.1007/s00381-006-0226-0

    Article  PubMed  Google Scholar 

  54. Zemack G, Romner B (2001) Do adjustable shunt valves pressure our budget? A retrospective analysis of 541 implanted Codman Hakim programmable valves. Br J Neurosurg 15(3):221–227. https://doi.org/10.1080/02688690120057637

    Article  CAS  PubMed  Google Scholar 

  55. Weinzierl MR, Rohde V, Gilsbach JM, Korinth M (2008) Management of hydrocephalus in infants by using shunts with adjustable valves. J Neurosurg Pediatr 2(1):14–18. https://doi.org/10.3171/PED/2008/2/7/014

    Article  PubMed  Google Scholar 

  56. Freimann FB, Sprung C (2012) Shunting with gravitational valves - can adjustments end the era of revisions for overdrainage-related events? Clinical article. J Neurosurg 117(6):1197–1204. https://doi.org/10.3171/2012.8.JNS1233

    Article  PubMed  Google Scholar 

  57. Gebert AF, Schulz M, Schwarz K, Thomale UW (2016) Long-term survival rates of gravity-assisted, adjustable differential pressure valves in infants with hydrocephalus. J Neurosurg Pediatr 17(5):544–551. https://doi.org/10.3171/2015.10.PEDS15328

    Article  PubMed  Google Scholar 

  58. Xinxing L, Hongyu D, Yunhui L (2015) Using individualized opening pressure to determine the optimal setting of an adjustable proGAV shunt in treatment of hydrocephalus in infants. Childs Nerv Syst 31(8):1267–1271. https://doi.org/10.1007/s00381-015-2795-2

    Article  PubMed  Google Scholar 

  59. Alavi S, Schulz M, Schaumann A, Schwarz K, Thomale UW (2017) Valve exchange towards an adjustable differential pressure valve with gravitational unit, clinical outcome of a single-center study. Childs Nerv Syst 33(5):759–765. https://doi.org/10.1007/s00381-017-3387-0

    Article  CAS  PubMed  Google Scholar 

  60. Schlosser HG, Crawack HJ, Miethke C, Knitter T, Zeiner A, Sprung C (2016) An improved reservoir for the flushing test to diagnose shunt insufficiency. Neurosurg Focus 41(3):1–8. https://doi.org/10.3171/2016.6.FOCUS15540

    Article  Google Scholar 

  61. Tirado-Caballero J, Rivero-Garvia M, Moreno-Madueño G, Gómez-González E, Marquez-Rivas J (2020) Chest implantation of adjustable gravitational valves: an easy, safe, and stable alternative to control symptomatic overdrainage in shunted children. World Neurosurg 146:90–94. https://doi.org/10.1016/j.wneu.2020.11.001

    Article  PubMed  Google Scholar 

  62. Villarejo F, Alvarez Sastre C, Posadas G, Pérez Díaz C, Amaya C, Pascual A (1993) Tratamiento de la hidrocefalia con válvula de resistencia variable. Neurocirugia. 4(3):191–195. https://doi.org/10.1016/S1130-1473(93)70846-5

    Article  Google Scholar 

  63. Henderson D, Budu A, Zaki H et al (2020) A comparison between flow-regulated and adjustable valves used in hydrocephalus during infancy. Childs Nerv Syst 36(9):2013–2019. https://doi.org/10.1007/s00381-020-04552-3

    Article  CAS  PubMed  Google Scholar 

  64. Parker SL, McGirt MJ, Murphy JA, Megerian JT, Stout M, Engelhart L (2015) Comparative effectiveness of antibiotic-impregnated shunt catheters in the treatment of adult and pediatric hydrocephalus: analysis of 12,589 consecutive cases from 287 US hospital systems. J Neurosurg 122(2):443–448. https://doi.org/10.3171/2014.10.JNS13395

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Víctor J. Fernández Cornejo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández Cornejo, V.J., Elbabaa, S.K. Shunt technology for infants and a lifetime. Childs Nerv Syst 37, 3475–3484 (2021). https://doi.org/10.1007/s00381-021-05132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-021-05132-9

Keywords

Navigation