Skip to main content

Advertisement

Log in

Neuroimaging in tuberous sclerosis complex

  • Annual issue paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Tuberous sclerosis complex (TSC) is a rare autosomal dominant disorder affecting multiple systems, due to inactivating mutations of TSC1 or TSC2 mTOR pathway genes. Neurological manifestations are observed in about 95% cases, representing the most frequent cause of morbidity and one of the most common causes of mortality.

Background

Neuroimaging is crucial for early diagnosis, monitoring, and management of these patients. While computed tomography is generally used as first-line investigation at emergency department, magnetic resonance imaging is the reference method to define central nervous system involvement and investigate subtle pathophysiological alterations in TSC patients.

Purpose

Here, we review the state-of-the-art knowledge in TSC brain imaging, describing conventional findings and depicting the role of advanced techniques in providing new insights on the disease, also offering an overview on future perspectives of neuroimaging applications for a better understanding of disease pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

TSC:

Tuberous sclerosis complex

mTOR:

Mammalian target of rapamycin

CNS:

Central nervous system

MRI:

Magnetic resonance imaging

CT:

Cortical tubers

WML:

White matter lesions

SEN:

Sub-ependymal nodules

SEGA:

Sub-ependymal giant cell astrocytoma

PET:

Positron emission tomography

SPECT:

Single photon emission computed tomography

DTI:

Diffusion tensor imaging

RS-fMRI:

Resting state functional magnetic resonance imaging

RML:

Radial migration lines

CTG:

Caudothalamic groove

TAND:

TSC-associated neuropsychiatric disorders

US:

Ultrasonography

References

  1. Henske EP, Józwiak S, Kingswood JC, Sampson JR, Thiele EA (2016) Tuberous sclerosis complex. Nat Rev Dis Prim 2(May):e1–e18

  2. Ebrahimi-fakhari D, Mann LL, Poryo M, Graf N, Von Kries R, Heinrich B et al (2019) Correction to: incidence of tuberous sclerosis and age at first diagnosis: new data and emerging trends from a national, prospective surveillance study. Orphanet J Rare Dis 14(106):106

    PubMed  PubMed Central  Google Scholar 

  3. Sancak O, Nellist M, Goedbloed M, Elfferich P, Wouters C, Maat-kievit A et al (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype–phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 13:731–741

    CAS  PubMed  Google Scholar 

  4. Qin W, Kozlowski P, Taillon BE, Bouffard P, Holmes AJ, Janne P, Camposano S, Thiele E, Franz D, Kwiatkowski DJ (2010) Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis complex. Hum Genet 127(5):573–582

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tyburczy ME, Dies KA, Glass J, Camposano S, Chekaluk Y, Thorner AR et al (2015) Mosaic and intronic mutations in TSC1/TSC2 explain the majority of TSC patients with no mutation identified by conventional testing. PLoS Genet 5(Nov):e1–e17

  6. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, Choy YS, Reeve MP, Thiele E, Egelhoff JC, Kasprzyk-Obara J, Domanska-Pakiela D, Kwiatkowski DJ (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80

    CAS  PubMed  Google Scholar 

  7. Alsowat D, Zak M, McCoy B, Kabir N, Al-mehmadi S, Chan V et al (2020) A review of investigations for patients with tuberous sclerosis complex who were referred to the tuberous sclerosis clinic at the hospital for sick children: identifying gaps in surveillance. Pediatr Neurol 102(jan):44–48

    PubMed  Google Scholar 

  8. Dimario FJJ (2004) Brain abnormalities in tuberous sclerosis complex. J Child Neurol 19(9):650–657

    PubMed  Google Scholar 

  9. Umeoka S, Koyama T, Miki Y, Akai M, Tsutsui K, Togashi K (2008) Pictorial review of tuberous sclerosis in various organs. Radiographics. 28(7):e32

    PubMed  Google Scholar 

  10. Vaughn J, Hagiwara M, Katz J, Roth J, Devinsky O, Weiner H, Milla S (2013) MRI characterization and longitudinal study of focal cerebellar lesions in a young tuberous sclerosis cohort. AJNR. 34(Mar):655–659

    CAS  PubMed  Google Scholar 

  11. Toldo I, Bugin S, Perissinotto E, Pelizza MF, Vignoli A, Parazzini C, Canevini MP, Nosadini M, Sartori S, Manara R (2019) Cerebellar lesions as potential predictors of neurobehavioural phenotype in tuberous sclerosis complex. Dev Med Child Neurol 61(10):1221–1228

    PubMed  Google Scholar 

  12. House PM, Holst B, Lindenau M, Voges B, Kohl B, Martens T et al (2015) Morphometric MRI analysis enhances visualization of cortical tubers in tuberous sclerosis. Epilepsy Research Morphometric MRI analysis enhances visualization of cortical tubers in tuberous sclerosis. Epilepsy Res [Internet] 117(August):29–34. Available from:. https://doi.org/10.1016/j.eplepsyres.2015.08.002

    Article  Google Scholar 

  13. Katz JS, Frankel H, Ma T, Zagzag D, Liechty B, Zeev B Ben, et al. (2017) Unique findings of subependymal giant cell astrocytoma within cortical tubers in patients with tuberous sclerosis complex: a histopathological evaluation. Childs Nerv Syst 33:601–607

  14. Gallagher A, Grant EP, Madan N, Jarrett DY, Lyczkowski DA, Thiele EA (2010) MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. J Neurol 257(8):1373–1381

    PubMed  PubMed Central  Google Scholar 

  15. Ellingson BM, Hirata Y, Yogi A, Karavaeva E, Leu K, Woodworth DC, Harris RJ, Enzmann DR, Wu JY, Mathern GW, Salamon N (2016) Topographical distribution of epileptogenic tubers in patients with tuberous sclerosis complex. J Child Neurol 31(5):636–645

    PubMed  Google Scholar 

  16. Mühlebner A, Van Scheppingen J, Hulshof HM, Scholl T, Iyer AM, Anink JJ et al (2016) Novel histopathological patterns in cortical tubers of epilepsy surgery patients with tuberous sclerosis complex. PLoS One 11(6):e1–e15

  17. El-Beheiry AA, Nassef HM, Darwish RM, Omar TEI, Hussein HM (2018) Which cortical tuber type is more epileptogenic? Magnetic resonance imaging-based study in children with tuberous sclerosis complex. Alexandria J Pediatr 31(2):43–51

    Google Scholar 

  18. Gallagher A, Chu-shore CJ, Montenegro MA, Major P, Costello DJ, Lyczkowski DA et al (2009) Associations between electroencephalographic and magnetic resonance imaging findings in tuberous sclerosis complex. Epilepsy Res 87:197–202

    PubMed  Google Scholar 

  19. Neal A, Ostrowsky-coste K, Jung J, Lagarde S, Maillard L, Kahane P et al (2019) Epileptogenicity in tuberous sclerosis complex: a stereoelectroencephalographic study. Epilepsia. 61(1):81–95

    PubMed  Google Scholar 

  20. Chugan DC (2011) α-methyl-L-tryptophan: mechanisms for tracer localization of epileptogenic brain regions. Biomark Med 5(5):567–575

    Google Scholar 

  21. Juhász C, Chugani DC, Muzik O, Shah A, Asano E, Mangner TJ et al (2003) Alpha-methyl-L-tryptophan PET detects epileptogenic cortex in children with intractable epilepsy. Neurol Int 60(6):960 LP–960968 Available from: http://n.neurology.org/content/60/6/960.abstract

    Google Scholar 

  22. Chandra PS, Salamon N, Huang J, Wu JY, Koh S, Vinters HV, Mathern GW (2006) FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia. 47(9):1543–1549

    PubMed  Google Scholar 

  23. Koh S, Jayakar P, Resnick T, Alvarez L, Liit RE, Duchowny M (1999) The localizing value of ictal SPECT in children with tuberous sclerosis complex and refractory partial epilepsy. Epileptic Disord 1(1):41–46

    CAS  PubMed  Google Scholar 

  24. Tiwari VN, Kumar A, Chakraborty PK, Chugani HT (2012) Can diffusion tensor imaging (DTI) identify epileptogenic tubers in tuberous sclerosis complex? correlation with a-[11C] methyl-L-tryptophan ([11C]AMT) positron emission tomography (PET). J Child Neurol 27(5):598–603

    PubMed  Google Scholar 

  25. Mukonoweshuro W, Wilkinson ID, Griffiths PD (2001) Proton MR spectroscopy of cortical tubers in adults with tuberous sclerosis complex. AJNR. 22(December):1920–1925

    CAS  PubMed  Google Scholar 

  26. Pollock JM, Whitlow CT, Tan H, Kraft RA, Burdette JH, Maldjian JA (2009) Pulsed arterial spin-labeled MR imaging evaluation of tuberous sclerosis. AJNR. 30(December):815–820

    CAS  PubMed  Google Scholar 

  27. Jacobs J, Rohr A, Moeller F, Boor R, Kobayashi E, Meng PL et al (2008) Evaluation of epileptogenic networks in children with tuberous sclerosis complex using EEG-fMRI. Epilepsia. 49(5):816–825

    PubMed  Google Scholar 

  28. Chalifoux JR, Perry N, Katz JS, Wiggins GC, Roth J, Miles D et al (2013) The ability of high field strength 7-T magnetic resonance imaging to reveal previously uncharacterized brain lesions in patients with tuberous sclerosis complex. J Neurosurg Ped 11(3):268–273

    Google Scholar 

  29. Marcotte L, Aronica E, Baybis M, Crino PB (2012) Cytoarchitectural alterations are widespread in cerebral cortex in tuberous sclerosis complex. Acta Neuropathol 123:685–693

    PubMed  Google Scholar 

  30. Van Eeghen AM, Terán LO, Johnson J, Pulsifer MB, Thiele EA, Caruso P (2013) The neuroanatomical phenotype of tuberous sclerosis complex: focus on radial migration lines. Neuroradiology. 55:1007–1014

    PubMed  Google Scholar 

  31. Niwa T, Aida N, Fujii Y, Nozawa K, Imai Y (2015) Age-related changes of susceptibility-weighted imaging in subependymal nodules of neonates and children with tuberous sclerosis complex. Brain and Development 37(10):967–973

    PubMed  Google Scholar 

  32. Boronat S, Caruso P, Thiele EA (2014) Absence of subependymal nodules in patients with tubers suggests possible neuroectodermal mosaicism in tuberous sclerosis complex. Dev Med Child Neurol 56:1207–1211

    PubMed  Google Scholar 

  33. Katz JS, Milla SS, Wiggins GC, Devinsky O, Weiner HL, Roth J (2012) Intraventricular lesions in tuberous sclerosis complex: a possible association with the caudate nucleus. J Neurosurg Pediatr 9(April):406–413

    PubMed  Google Scholar 

  34. Ridler K, Suckling J, Higgins N, Bolton P, Bullmore E (2004) Standardized whole brain mapping of tubers and subependymal nodules in tuberous sclerosis complex. J Child Neurol 19(9):658–665

    PubMed  Google Scholar 

  35. Jansen AC, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P et al (2019) Clinical characteristics of subependymal giant cell astrocytoma in tuberous sclerosis complex. Front Neurol 10(July):e1–e9

    Google Scholar 

  36. Arca G, Pacheco E, Alfonso I, Duchowny MS, Melnick SJ (2006) Characteristic brain magnetic resonance imaging (MRI) findings in neonates with tuberous sclerosis complex. J Child Neurol 21(4):280–285

    PubMed  Google Scholar 

  37. Krueger DA, Northrup H, Tuberous I (2013) Pediatric neurology tuberous sclerosis complex surveillance and management: recommendations of the 2012 International Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 49:255–265

    PubMed  PubMed Central  Google Scholar 

  38. Rovira A, Ruiz-Falco ML, Garcia-Esparza E, Lopez-Laso E, Macaya A, Malaga I et al (2014) Recommendations for the radiological diagnosis and follow-up of neuropathological abnormalities associated with tuberous sclerosis complex. J Neuro-Oncol 118:205–223

    Google Scholar 

  39. Mallio CA, Rovira À, Parizel PM, Quattrocchi CC (2020) Exposure to gadolinium and neurotoxicity: current status of preclinical and clinical studies. Neuroradiology. (April):(Online – Ahead of print).

  40. Cuddapah VA, Thompson M, Blount J, Li R, Guleria S, Goyal M (2015) Hemispherectomy in hemimegalencephaly with tuberous sclerosis in a seven week old infant and a review of the literature. Pediatr Neurol [Internet] 53(5):452–455. Available from:. https://doi.org/10.1016/j.pediatrneurol.2015.06.020

    Article  Google Scholar 

  41. Galluzzi P, Cerase A, Strambi M, Buoni S, Fois A, Venturi C (2002) Hemimegalencephaly in tuberous sclerosis complex. J Child Neurol 17(9):677–680

    PubMed  Google Scholar 

  42. Helbok R, Kuchukhidze G, Unterberger I, Koppelstaetter F, Dobesberger J, Donnemiller E, Trinka E (2009) Tuberous sclerosis complex with unilateral perisylvian polymicrogyria and contralateral hippocampal sclerosis — a case report. Seizure. 18:303–305

    CAS  PubMed  Google Scholar 

  43. Chatterjee S, Mukherjee SB, Mendiratta V, Aneja S (2015) Sturge Weber–like gyral calcification seen in tuberous sclerosis complex 1. J Child Neurol 30(8):1070–1074

    PubMed  Google Scholar 

  44. Muhammed K, Mathew J (2007) Coexistence of two neurocutaneous syndromes: Tuberous sclerosis and hypomelanosis of Ito. Indian J Dermatol Venereol Leprol 73:43–45

    CAS  PubMed  Google Scholar 

  45. Suttur S, Mysore R, Krishnamurthy B, Nallur RB (2009) Rare association of Turner syndrome with neurofibromatosis type 1 and tuberous sclerosis complex. Indian J Hum Genet 15(2):75–77

    PubMed Central  Google Scholar 

  46. Boronat S, Shaaya EA, Auladell M, Thiele EA, Caruso P (2014) Intracranial arteriopathy in tuberous sclerosis complex. J Child Neurol 29(7):912–919

    PubMed  Google Scholar 

  47. De Vries PJ, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P et al (2018) TSC-associated neuropsychiatric disorders (TAND): findings from the TOSCA natural history study. Orphanet J Rare Dis 13(157):1–13

    Google Scholar 

  48. Wong M (2019) The role of glia in epilepsy, intellectual disability, and other neurodevelopmental disorders in tuberous sclerosis complex. J Dev Disord 11(30):e1–e9

    Google Scholar 

  49. Akhondi-Asl A, Hans A, Scherrer B, Peters JM, Warfield SK (2015) Whole brain group network analysis using network bias and variance parameters. Proc IEEE Int Symp Biomed Imaging 5(May):1511–1514

    Google Scholar 

  50. Ahtam B, Dehaes M, Sliva D (2019) Resting-state fMRI networks in children with tuberous sclerosis complex. J Neuroimaging 29(6):750–759

    PubMed  Google Scholar 

  51. Baumer FM, Peters JM, Clancy S, Prohl AK, Prabhu SP, Scherrer B, Jansen FE, Braun KPJ, Sahin M, Stamm A, Warfield SK (2018) Corpus callosum white matter diffusivity reflects cumulative neurological comorbidity in tuberous sclerosis complex. Cereb Cortex 28(October):3665–3672

    PubMed  Google Scholar 

  52. Im K, Ahtam B, Haehn D, Peters JM, Warfield SK, Sahin M, Ellen Grant P (2016) Altered structural brain networks in tuberous sclerosis complex. Cereb Cortex 26(May):2046–2058

    PubMed  Google Scholar 

  53. Simao G, Raybaud C, Chuang S, Go C, Snead O, Widjaja E (2010) Diffusion tensor imaging of commissural and projection white matter in tuberous sclerosis complex and correlation with tuber load. AJNR. 31(Aug):1273–1277

    CAS  PubMed  Google Scholar 

  54. Peters JM, Sahin M, Vogel-Farley VK, Jeste SS, III CAN, Gregas MC et al (2013) Loss of white matter microstructural integrity is associated with adverse neurological outcome in tuberous sclerosis complex. Acta Radiol 19(1):17–25

  55. Prohl AK, Scherrer B, Tomas-Fernandez X, Davis PE, Filip-Dhima R, Prabhu SP et al (2019) Early white matter development is abnormal in tuberous sclerosis complex patients who develop autism spectrum disorder. J Neurodev Disord 11(36):e1–e16

  56. Lewis WW, Sahin M, Scherrer B, Peters JM, Suarez RO, Vogel-Farley VK, Jeste SS, Gregas MC, Prabhu SP, Nelson CA, Warfield SK (2013) Impaired language pathways in tuberous sclerosis complex patients with autism spectrum disorders. Cereb Cortex 23(July):1526–1532

    PubMed  Google Scholar 

  57. Baumer FM, Songb JW, Mitchellc PD, Pienaard R, Sahina M, Grantb PE et al (2015) Longitudinal changes in diffusion properties in white matter pathways of children with tuberous sclerosis complex. Pediatr Neurol 52(6):615–623

    PubMed  PubMed Central  Google Scholar 

  58. Kaden E, Kelm ND, Carson RP, Does MD, Alexander DC (2016) Multi-compartment microscopic diffusion imaging. Neuroimage. 139(Oct):346–359

    PubMed  PubMed Central  Google Scholar 

  59. Al-ogab AMZMF, Al-shaftery T (2015) MRI or not to MRI ! Should brain MRI be a routine investigation in children with autistic spectrum disorders ? Acta Neurol Belg [Internet] 115(3):351–354. Available from:. https://doi.org/10.1007/s13760-014-0384-x

    Article  Google Scholar 

  60. Kingswood JC, Augères GB, Belousova E, Ferreira JC, Carter T, Castellana R et al (2017) TuberOus SClerosis registry to increase disease Awareness (TOSCA) – baseline data on 2093 patients. Orphanet J Rare Dis [Internet] 12(1):2. Available from:. https://doi.org/10.1186/s13023-016-0553-5

    Article  Google Scholar 

  61. Paleologou E, Nicholl R (2014) Uncommon antenatal presentation of tuberous sclerosis. BMJ Case Rep (June) 2014:bcr2013201012

    Google Scholar 

  62. Karagianni A, Karydakis P, Giakoumettis D, Nikas I, Sfakianos G, Temistocleou M (2020) Fetal subependymal giant cell astrocytoma: a case report and review of the literature. Surg Neurol Int 11(26):1–5

    Google Scholar 

  63. Dragoumi P, Callaghan FO, Zafeiriou DI (2018) Diagnosis of tuberous sclerosis complex in the fetus. Eur J Paediatr Neurol [Internet] 22(6):1027–1034. Available from. https://doi.org/10.1016/j.ejpn.2018.08.005

    Article  Google Scholar 

  64. Saleem SN (2014) Fetal MRI: an approach to practice: a review. J Adv Res [Internet] 5:507–523. Available from:. https://doi.org/10.1016/j.jare.2013.06.001

    Article  CAS  Google Scholar 

  65. Prabowo A, Anink J, Lammens M, Nellist M, van den Ouweland AMW, Biassette HA et al (2014) Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol 23(1):45–59

    Google Scholar 

  66. Anderl S, Freeland M, Kwiatkowski DJ, Goto J (2011) Therapeutic value of prenatal rapamycin treatment in a mouse brain model of tuberous sclerosis complex. Hum Mol Genet 20(23):4597–4604

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All Authors make substantial contributions to conception and design, and/or acquisition of data, and/or analysis and interpretation of data according to ICMJE recommendations. All those who have made substantive contributions to the article have been named as authors.

Corresponding author

Correspondence to Giuseppe Cinalli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, C., Nastro, A., Cicala, D. et al. Neuroimaging in tuberous sclerosis complex. Childs Nerv Syst 36, 2497–2509 (2020). https://doi.org/10.1007/s00381-020-04705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04705-4

Keywords

Navigation