Skip to main content

Advertisement

Log in

Hydrocephalus in infants: the unique biomechanics and why they matter

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Object

Hydrocephalus diagnosed prenatally or in infancy differs substantially from hydrocephalus that develops later in life. The purpose of this review is to explore hydrocephalus that begins before skull closure and full development of the brain. Understanding the unique biomechanics of hydrocephalus beginning very early in life is essential to explain two poorly understood and controversial issues. The first is why is endoscopic third ventriculostomy (ETV) less likely to be successful in premature babies and in infants? The second relates to shunt failure in a subset of older patients treated in infancy leading to life-threatening intracranial pressure without increase in ventricular volume.

Methods

The review will utilize engineering concepts related to ventricular volume regulation to explain the unique nature of hydrocephalus developing in the fetus and infant. Based on these concepts, their application to the treatment of complex issues of hydrocephalus management, and a review of the literature, it is possible to assess treatment strategies specific to the infant or former infant with hydrocephalus-related issues throughout life.

Results

Based on engineering, all hydrocephalus, except in choroid plexus tumors or hyperplasia, relates to restriction of the flow of cerebrospinal fluid (CSF). Hydrocephalus develops when there is a pressure difference from the ventricles and a space exterior to the brain. When the intracranial volume is fixed due to a mature skull, that difference is between the ventricle and the cortical subarachnoid space. Due to the distensibility of the skull, hydrocephalus in infants may develop due to failure of the terminal absorption of CSF. The discussion of specific surgical treatments based on biomechanical concepts discussed here has not been specifically validated by prospective trials. The rare nature of the issues discussed and the need to follow the patients for decades make this quite difficult. A prospective registry would be helpful in the validation of surgical recommendations.

Conclusion

The time of first intervention for treatment of hydrocephalus is an important part of the history. Treatment strategies should be based on the assessment of the roll of trans-mantle pressure differences in deciding treatment strategies. Following skull closure distension of the ventricles at the time of shunt failure requires a pressure differential between the ventricles and the cortical subarachnoid space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CSF:

Cerebrospinal fluid

ETV:

Endoscopic third ventriculostomy

CSAS:

Cortical subarachnoid space

SSAS:

Spinal subarachnoid space

TMP:

Trans-mantle pressure difference

MKH:

Monro-Kellie hypothesis

PHH:

Post-hemorrhagic intraventricular hydrocephalus

IVH:

Intraventricular hemorrhage

C2M:

Chiari II malformation

NVH:

Normal volume hydrocephalus

SSS:

Severe slit ventricle syndrome

References

  1. Drake JM, Kulkarni AV, Kestle J (2009) Endoscopic third ventriculostomy versus ventriculoperitoneal shunt in pediatric patients: a decision analysis, Child’s Nervous System: ChNS: Official Journal of the International Society for Pediatric Neurosurgery. 25:467–472. https://doi.org/10.1007/s00381-008-0761-y

  2. Kulkarni AV et al (2010) Predicting who will benefit from endoscopic third ventriculostomy compared with shunt insertion in childhood hydrocephalus using the ETV Success Score. J Neurosurg Pediatr 6:310–315. https://doi.org/10.3171/2010.8.PEDS103

    Article  PubMed  Google Scholar 

  3. Kulkarni AV, Sgouros S, Constantini S, Investigators I (2016) International Infant Hydrocephalus Study: initial results of a prospective, multicenter comparison of endoscopic third ventriculostomy (ETV) and shunt for infant hydrocephalus. Child’s Nerv Syst 32:1039–1048. https://doi.org/10.1007/s00381-016-3095-1

    Article  Google Scholar 

  4. Kulkarni, A. V., Sgouros, S., Leitner, Y., Constantini, S. & International Infant Hydrocephalus Study, I. International Infant Hydrocephalus Study (IIHS): 5-year health outcome results of a prospective, multicenter comparison of endoscopic third ventriculostomy (ETV) and shunt for infant hydrocephalus. Child’s Nervous System: ChNS: Official Journal of the International Society for Pediatric Neurosurgery 34, 2391–2397, doi:https://doi.org/10.1007/s00381-018-3896-5 (2018).

  5. Kulkarni AV et al (2017) Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. N Engl J Med 377:2456–2464. https://doi.org/10.1056/NEJMoa1707568

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rekate HL, Brodkey JA, Chizeck HJ, el Sakka W, Ko WH (1988) Ventricular volume regulation: a mathematical model and computer simulation. Pediatr Neurosci 14:77–84

    Article  CAS  PubMed  Google Scholar 

  7. Epstein F, Hochwald GM, Ransohoff J (1973) Neonatal hydrocephalus treated by compressive head wrapping. Lancet 1:634–636. https://doi.org/10.1016/s0140-6736(73)92200-9

    Article  CAS  PubMed  Google Scholar 

  8. Hochwald GM, Epstein F, Malhan C, Ransohoff J (1972) The role of the skull and dura in experimental feline hydrocephalus. Dev Med Child Neurol Suppl 27:65–69. https://doi.org/10.1111/j.1469-8749.1972.tb09776.x

    Article  CAS  PubMed  Google Scholar 

  9. Moss ML (1975) Functional anatomy of cranial synostosis. Childs Brain 1:22–33

    CAS  PubMed  Google Scholar 

  10. Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 5:2. https://doi.org/10.1186/1743-8454-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rekate HL et al (1985) Etiology of ventriculomegaly in choroid plexus papilloma. Pediatr Neurosci 12:196–201

    Article  PubMed  Google Scholar 

  12. Hirano H et al (1994) Hydrocephalus due to villous hypertrophy of the choroid plexus in the lateral ventricles. Case report J Neurosurg 80:321–323. https://doi.org/10.3171/jns.1994.80.2.0321

    Article  CAS  PubMed  Google Scholar 

  13. Philips MF, Shanno G, Duhaime AC (1998) Treatment of villous hypertrophy of the choroid plexus by endoscopic contact coagulation. Pediatr Neurosurg 28:252–256. https://doi.org/10.1159/000028660

    Article  CAS  PubMed  Google Scholar 

  14. Warren DT, Hendson G, Cochrane DD (2009) Bilateral choroid plexus hyperplasia: a case report and management strategies. Child’s Nerv Syst 25:1617–1622. https://doi.org/10.1007/s00381-009-0923-6

    Article  Google Scholar 

  15. Ramakrishnan, V. R. & Steinbok, P. (2018) In: Pediatric hydrocephalus (eds G. Cinalli & S. Sgouros), 1–24. Springer International Publishing

  16. Steinbok P, Hall J, Flodmark O (1989) Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg 71:42–48. https://doi.org/10.3171/jns.1989.71.1.0042

    Article  CAS  Google Scholar 

  17. Pierre-Kahn A, Hirsch JF, Renier D (1980) Metzger, J. & Maroteaux, P. Hydrocephalus and achondroplasia. A study of 25 observations. Childs Brain 7:205–219

    CAS  PubMed  Google Scholar 

  18. Rekate HL (2019) Pathogenesis of hydrocephalus in achondroplastic dwarfs: a review and presentation of a case followed for 22 years. Child’s Nerv Syst 35:1295–1301. https://doi.org/10.1007/s00381-019-04227-8

    Article  Google Scholar 

  19. Karahalios DG, Rekate HL, Khayata MH, Apostolides PJ (1996) Elevated intracranial venous pressure as a universal mechanism in pseudotumor cerebri of varying etiologies. Neurology 46:198–202

    Article  CAS  PubMed  Google Scholar 

  20. Bateman GA, Alber M, Schuhmann MU (2014) An association between external hydrocephalus in infants and reversible collapse of the venous sinuses. Neuropediatrics 45:183–187. https://doi.org/10.1055/s-0033-1363092

    Article  PubMed  Google Scholar 

  21. Bateman GA, Napier BD (2011) External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation. Child’s Nerv Syst 27:2087–2096. https://doi.org/10.1007/s00381-011-1549-z

    Article  Google Scholar 

  22. Tuli S, O’Hayon B, Drake J, Clarke M, Kestle J (1999) Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus. Neurosurgery 45:1329–1333; discussion 1333–1325. https://doi.org/10.1097/00006123-199912000-00012

    Article  CAS  PubMed  Google Scholar 

  23. Kaufman B, Weiss MH, Young HF, Nulsen FE (1973) Effects of prolonged cerebrospinal fluid shunting on the skull and brain. J Neurosurg 38:288–297. https://doi.org/10.3171/jns.1973.38.3.0288

    Article  CAS  PubMed  Google Scholar 

  24. Rekate HL (2011) A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Child’s Nerv Syst 27:1535–1541. https://doi.org/10.1007/s00381-011-1558-y

    Article  Google Scholar 

  25. Rekate HL, Nadkarni TD, Wallace D (2008) The importance of the cortical subarachnoid space in understanding hydrocephalus. J Neurosurg Pediatr 2:1–11. https://doi.org/10.3171/PED/2008/2/7/001

    Article  PubMed  Google Scholar 

  26. Shapiro K, Kohn IJ, Takei F, Zee C (1987) Progressive ventricular enlargement in cats in the absence of transmantle pressure gradients. J Neurosurg 67:88–92. https://doi.org/10.3171/jns.1987.67.1.0088

    Article  CAS  PubMed  Google Scholar 

  27. Stephensen H, Tisell M, Wikkelso C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50:763–771; discussion 771–763

    Article  PubMed  Google Scholar 

  28. Conner ES, Foley L, Black PM (1984) Experimental normal-pressure hydrocephalus is accompanied by increased transmantle pressure. J Neurosurg 61:322–327. https://doi.org/10.3171/jns.1984.61.2.0322

    Article  CAS  PubMed  Google Scholar 

  29. Levine DN (2008) Intracranial pressure and ventricular expansion in hydrocephalus: have we been asking the wrong question? J Neurol Sci 269:1–11. https://doi.org/10.1016/j.jns.2007.12.022

    Article  PubMed  Google Scholar 

  30. Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16:9–15. https://doi.org/10.1016/j.spen.2009.01.002

    Article  PubMed  Google Scholar 

  31. Patel SK, Zamorano-Fernandez J, Nagaraj U, Bierbrauer KS, Mangano FT (2019) Not all ventriculomegaly is created equal: diagnostic overview of fetal, neonatal and pediatric ventriculomegaly. Child’s Nerv Syst. https://doi.org/10.1007/s00381-019-04384-w

  32. Tully HM, Dobyns WB (2014) Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur J Med Genet 57:359–368. https://doi.org/10.1016/j.ejmg.2014.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Riva-Cambrin J et al (2016) Risk factors for shunt malfunction in pediatric hydrocephalus: a multicenter prospective cohort study. J Neurosurg Pediatr 17:382–390. https://doi.org/10.3171/2015.6.PEDS14670

    Article  PubMed  Google Scholar 

  34. Koschnitzky JE et al (2018) Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids Barriers CNS 15:11. https://doi.org/10.1186/s12987-018-0096-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Strahle J et al (2012) Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res 3:25–38. https://doi.org/10.1007/s12975-012-0182-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. We D (1919) Experimental Hydrocephalus. Ann Surg 70:129–143

    Article  Google Scholar 

  37. Ransohoff J, Shulman K, Fishman RA (1960) Hydrocephalus: a review of etiology and treatment. J Pediatr 56:399–411

    Article  CAS  PubMed  Google Scholar 

  38. Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9. https://doi.org/10.1186/1743-8454-7-9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pollay M (2012) Overview of the CSF dual outflow system. Acta Neurochir Suppl 113:47–50. https://doi.org/10.1007/978-3-7091-0923-6_10

    Article  PubMed  Google Scholar 

  40. Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8:5. https://doi.org/10.1186/2045-8118-8-5

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pang D (1986) Sclabassi, R. J. & Horton, J. A. Lysis of intraventricular blood clot with urokinase in a canine model. Part 3. Effects of intraventricular urokinase on clot lysis and posthemorrhagic hydrocephalus. Neurosurgery 19:553–572. https://doi.org/10.1227/00006123-198610000-00010

    Article  CAS  PubMed  Google Scholar 

  42. Mazzola CA et al (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: Management of posthemorrhagic hydrocephalus in premature infants. J Neurosurg Pediatr 14(Suppl 1):8–23. https://doi.org/10.3171/2014.7.PEDS14322

    Article  Google Scholar 

  43. Badhiwala JH et al (2015) Treatment of posthemorrhagic ventricular dilation in preterm infants: a systematic review and meta-analysis of outcomes and complications. J Neurosurg Pediatr 16:545–555. https://doi.org/10.3171/2015.3.PEDS14630

    Article  PubMed  Google Scholar 

  44. Epstein F, Wald A, Hochwald GM (1974) Intracranial pressure during compressive head wrapping in treatment of neonatal hydrocephalus. Pediatrics 54:786–790

    CAS  PubMed  Google Scholar 

  45. Epstein, F. J., Hochwald, G. M., Wald, A. & Ransohoff, J. (1975) Avoidance of shunt dependency in hydrocephalus. Dev Med Child Neurol Suppl, 71–77, https://doi.org/10.1111/j.1469-8749.1975.tb03582.x

  46. Epstein F, Hochwald G, Ransohoff J (1973) A volume control system for the treatment of hydrocephalus: laboratory and clinical experience. J Neurosurg 38:282–287. https://doi.org/10.3171/jns.1973.38.3.0282

    Article  CAS  PubMed  Google Scholar 

  47. Stone SS, Warf BC (2014) Combined endoscopic third ventriculostomy and choroid plexus cauterization as primary treatment for infant hydrocephalus: a prospective North American series. J Neurosurg Pediatr 14:439–446. https://doi.org/10.3171/2014.7.PEDS14152

    Article  PubMed  Google Scholar 

  48. Kestle, J. et al. Long-term follow-up data from the Shunt Design Trial. Pediatr Neurosurg 33, 230–236, doi:55960 (2000).

  49. Dias MS, McLone DG (1993) Hydrocephalus in the child with dysraphism. Neurosurg Clin N Am 4:715–726

    Article  CAS  PubMed  Google Scholar 

  50. McLone DG, Knepper PA (1989) The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 15:1–12. https://doi.org/10.1159/000120432

    Article  CAS  PubMed  Google Scholar 

  51. McLone DG (1998) Chiari II. Pediatr Neurosurg 29:111. https://doi.org/10.1159/000028700

    Article  CAS  PubMed  Google Scholar 

  52. Sadler T (2005) W. Embryology of neural tube development. American Journal of Medical Genetics. Part C. Seminars in Medical Genetics 135C:2–8. https://doi.org/10.1002/ajmg.c.30049

    Article  CAS  PubMed  Google Scholar 

  53. Tarby T (1991) J. In: Rekate HL (ed) Comprehensive management of spina bifida. Ch. 2, pp. 29–48. CRC Press, Inc.

    Google Scholar 

  54. McLone DG, Dias MS (2003) The Chiari II malformation: cause and impact. Child’s Nerv Syst 19:540–550. https://doi.org/10.1007/s00381-003-0792-3

    Article  Google Scholar 

  55. Rekate, H. L. In: H. L. Rekate (2020) Comprehensive management of spina bifida, Ch. 1, pp. 1–28. CRC Press (1991).

  56. Nadkarni TD, Rekate HL (2005) Treatment of refractory intracranial hypertension in a spina bifida patient by a concurrent ventricular and cisterna magna-to-peritoneal shunt. Child’s Nerv Syst 21:579–582. https://doi.org/10.1007/s00381-004-1057-5

    Article  Google Scholar 

  57. Adzick NS et al (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004. https://doi.org/10.1056/NEJMoa1014379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tulipan N et al (2015) Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. J Neurosurg Pediatr 16:613–620. https://doi.org/10.3171/2015.7.Peds15336

    Article  PubMed  PubMed Central  Google Scholar 

  59. Farmer DL et al (2018) The management of myelomeningocele study: full cohort 30-month pediatric outcomes. Am J Obstet Gynecol 218:256 e251–256 e213. https://doi.org/10.1016/j.ajog.2017.12.001

    Article  Google Scholar 

  60. Kahle KT, Kulkarni AV, Limbrick DD Jr, Warf BC (2016) Hydrocephalus in children. Lancet 387:788–799. https://doi.org/10.1016/s0140-6736(15)60694-8

    Article  PubMed  Google Scholar 

  61. King JA, Vachhrajani S, Drake JM, Rutka JT (2009) Neurosurgical implications of achondroplasia. J Neurosurg Pediatr 4:297–306. https://doi.org/10.3171/2009.3.PEDS08344

    Article  Google Scholar 

  62. Priestley BL, Lorber J (1981) Ventricular size and intelligence in achondroplasia. Zeitschrift fur Kinderchirurgie : organ der Deutschen, der Schweizerischen und der Osterreichischen Gesellschaft fur Kinderchirurgie. Surgery in Infancy and Childhood 34:320–326. https://doi.org/10.1055/s-2008-1063368

    Article  CAS  PubMed  Google Scholar 

  63. Erdincler P et al (1997) Hydrocephalus and chronically increased intracranial pressure in achondroplasia. Child’s Nerv Syst 13:345–348. https://doi.org/10.1007/s003810050094

    Article  CAS  Google Scholar 

  64. Swift D, Nagy L, Robertson B (2012) Endoscopic third ventriculostomy in hydrocephalus associated with achondroplasia. J Neurosurg Pediatr 9:73–81. https://doi.org/10.3171/2011.10.peds1169

    Article  Google Scholar 

  65. Sainte-Rose C, LaCombe J, Pierre-Kahn A, Renier D, Hirsch JF (1984) Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg 60:727–736. https://doi.org/10.3171/jns.1984.60.4.0727

    Article  CAS  PubMed  Google Scholar 

  66. Lundar T, Bakke SJ, Nornes H (1990) Hydrocephalus in an achondroplastic child treated by venous decompression at the jugular foramen. Case report J Neurosurg 73:138–140. https://doi.org/10.3171/jns.1990.73.1.0138

    Article  CAS  PubMed  Google Scholar 

  67. Coll G et al (2016) Human Foramen Magnum Area and Posterior Cranial Fossa Volume Growth in Relation to Cranial Base Synchondrosis Closure in the Course of Child Development. Neurosurgery 79:722–735. https://doi.org/10.1227/NEU.0000000000001309

    Article  PubMed  Google Scholar 

  68. Francis PM et al (1992) () Chronic tonsillar herniation and Crouzon’s syndrome. Pediatr Neurosurg 18:202–206

    Article  CAS  PubMed  Google Scholar 

  69. Thompson DN, Harkness W, Jones BM, Hayward RD (1997) Aetiology of herniation of the hindbrain in craniosynostosis. An investigation incorporating intracranial pressure monitoring and magnetic resonance imaging. Pediatr Neurosurg 26:288–295

    Article  CAS  PubMed  Google Scholar 

  70. Cinalli G et al (1998) Hydrocephalus and craniosynostosis. J Neurosurg 88:209–214. https://doi.org/10.3171/jns.1998.88.2.0209

    Article  CAS  Google Scholar 

  71. Florisson JM et al (2015) Venous hypertension in syndromic and complex craniosynostosis: the abnormal anatomy of the jugular foramen and collaterals. J Craniomaxillofac Surg 43:312–318. https://doi.org/10.1016/j.jcms.2014.11.023

    Article  PubMed  Google Scholar 

  72. Rich PM, Cox TC, Hayward RD (2003) The jugular foramen in complex and syndromic craniosynostosis and its relationship to raised intracranial pressure. AJNR Am J Neuroradiol 24:45–51

    PubMed  Google Scholar 

  73. Taylor WJ et al (2001) Enigma of raised intracranial pressure in patients with complex craniosynostosis: the role of abnormal intracranial venous drainage. J Neurosurg 94:377–385. https://doi.org/10.3171/jns.2001.94.3.0377

    Article  CAS  PubMed  Google Scholar 

  74. Thompson DN, Jones BM, Harkness W, Gonsalez S, Hayward RD (1997) Consequences of cranial vault expansion surgery for craniosynostosis. Pediatr Neurosurg 26:296–303. https://doi.org/10.1159/000121209

    Article  CAS  PubMed  Google Scholar 

  75. Engel, M., Carmel, P. W. & Chutorian, A. M. Increased intraventricular pressure without ventriculomegaly in children with shunts: “normal volume hydrocephalus. Neurosurgery 5, 549–552 (1979).

  76. Baskin JJ, Manwaring KH, Rekate HL (1998) Ventricular shunt removal: the ultimate treatment of the slit ventricle syndrome. J Neurosurg 88:478–484. https://doi.org/10.3171/jns.1998.88.3.0478

    Article  CAS  PubMed  Google Scholar 

  77. McNatt SA, Kim A, Hohuan D, Krieger M, McComb JG (2008) Pediatric shunt malfunction without ventricular dilatation. Pediatr Neurosurg 44:128–132. https://doi.org/10.1159/000113115

    Article  PubMed  Google Scholar 

  78. Khorasani L, Sikorski CW, Frim DM (2004) Lumbar CSF shunting preferentially drains the cerebral subarachnoid over the ventricular spaces: implications for the treatment of slit ventricle syndrome. Pediatr Neurosurg 40:270–276. https://doi.org/10.1159/000083739

    Article  PubMed  Google Scholar 

  79. Le H, Yamini B, Frim DM (2002) Lumboperitoneal shunting as a treatment for slit ventricle syndrome. Pediatr Neurosurg 36:178–182, 56054

    Article  PubMed  Google Scholar 

  80. Rekate HL (2004) The slit ventricle syndrome: advances based on technology and understanding. Pediatr Neurosurg 40:259–263. https://doi.org/10.1159/000083737

    Article  PubMed  Google Scholar 

  81. Rekate HL, Nadkarni T, Wallace D (2006) Severe intracranial hypertension in slit ventricle syndrome managed using a cisterna magna-ventricle-peritoneum shunt. J Neurosurg 104:240–244. https://doi.org/10.3171/ped.2006.104.4.240

    Article  PubMed  Google Scholar 

  82. Rekate H (2018) L. In: Cinalli G, Sgouros S (eds) Pediatric hyddrocephalus. Springer Nature, Switzerland AG

    Google Scholar 

  83. Epstein, F., Lapras, C. & Wisoff, J. H. ‘slit-ventricle syndrome’: etiology and treatment. Pediatr Neurosci 14, 5–10 (1988).

  84. Albright, A. L. & Tyler-Kabara, E. Slit-ventricle syndrome secondary to shunt-induced suture ossification. Neurosurgery 48, 764–769; discussion 769–770 (2001).

  85. Miller, J. P., Cohen, A.R. Rekate, H. L. In: G. I. Jallo, Kothbauer, K.F., Pradilla, G. (eds) Controversies in pediatric neurosurgery, Ch. 5, pp. 51–72.Thieme Medical Publisher, Inc. (2010).

  86. Shapiro K, Marmarou A (1982) Clinical applications of the pressure-volume index in treatment of pediatric head injuries. J Neurosurg 56:819–825. https://doi.org/10.3171/jns.1982.56.6.0819

    Article  CAS  PubMed  Google Scholar 

  87. Rekate HL (1993) Classification of slit-ventricle syndromes using intracranial pressure monitoring. Pediatr Neurosurg 19:15–20

    Article  CAS  PubMed  Google Scholar 

  88. Rekate HL, Wallace D (2003) Lumboperitoneal shunts in children. Pediatr Neurosurg 38:41–46, 67562

    Article  PubMed  Google Scholar 

  89. Diaz-Romero Paz R, Altimira PA, Valverde GC, Martin CB (2019) A rare case of negative pressure hydrocephalus: a plausible explanation and the role of transmantle theory. World Neurosurg. https://doi.org/10.1016/j.wneu.2019.01.117

  90. Rekate H (2019) Low or negative pressure hydrocephalus demystified. World Neurosurg. https://doi.org/10.1016/j.wneu.2019.05.032

  91. Rekate HL (2009) The pediatric neurosurgical patient: the challenge of growing up. Semin Pediatr Neurol 16:2–8. https://doi.org/10.1016/j.spen.2009.03.004

    Article  PubMed  Google Scholar 

  92. Rekate HL (2008) Shunt-related headaches: the slit ventricle syndromes. Child’s Nerv Syst 24:423–430. https://doi.org/10.1007/s00381-008-0579-7

    Article  Google Scholar 

  93. Rekate HL, Kranz D (2009) Headaches in patients with shunts. Semin Pediatr Neurol 16:27–30. https://doi.org/10.1016/j.spen.2009.01.001

    Article  PubMed  Google Scholar 

  94. Vinchon M, Baroncini M, Delestret I (2012) Adult outcome of pediatric hydrocephalus. Child’s Nerv Syst 28:847–854. https://doi.org/10.1007/s00381-012-1723-y

    Article  Google Scholar 

  95. Vinchon M, Rekate H, Kulkarni AV (2012) Pediatric hydrocephalus outcomes: a review. Fluids Barriers CNS 9:18. https://doi.org/10.1186/2045-8118-9-18

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold L. Rekate.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Members of the Hydrocephalus Classification Study Group:

  • Osamu Sato, MD, Tokyo, Japan

  • Shizuo Oi, MD, PhD, Tokyo, Japan

  • Charles Teo, MD, Sydney, Australia

  • John Pickard, MD, Cambridge, UK

  • Marion Walker, MD, Salt Lake City, UT

  • J. Patrick McAllister, PhD, Salt Lake City, UT

  • Gordon McComb, MD, Los Angeles, CA

  • Martina Messing-Jùʼnger, MD, Sankt Augustin, Germany

  • Michael Pollay, MD, Sun City West, AZ

  • Spyros Sgouros, MD, Athens, Greece

  • Petra Klinge, MD, PhD, Providence, RI

  • Thomas Brinker, MD, PhD, Providence, RI

  • Conrad Johansson, PhD, Providence, RI

  • Concezio Di Rocco, MD, Rome, Italy

  • Harold L. Rekate, MD, Great Neck, NY

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekate, H.L. Hydrocephalus in infants: the unique biomechanics and why they matter. Childs Nerv Syst 36, 1713–1728 (2020). https://doi.org/10.1007/s00381-020-04683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04683-7

Keywords

Navigation