Skip to main content

Advertisement

Log in

Fetal brain damage in congenital hydrocephalus

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Congenital hydrocephalus (HCP) is a developmental brain disorder characterized by the abnormal accumulation of cerebrospinal fluid within the ventricles. It is caused by genetic and acquired factors that start during early embryogenesis with disruption of the neurogerminal areas. As might be expected, early-onset hydrocephalus alters the process of brain development leading to irreparable neurological deficit. A primary alteration of the ependyma/neural stem cells (affecting vesicle trafficking and abnormal cell junctions) leads to its loss or denudation and translocation of neural progenitor cells (NPCs) and neural stem cells (NSCs) into the cerebrospinal fluid (CSF). Under these abnormal conditions, morphological and functional processes, underlying the concept of astroglial reaction, are initiated in an attempt to recover homeostasis in the periventricular zone. This astroglial reaction includes astrocyte hypertrophy, hyperplasia, and development of a new layer with reorganized functional features that resemble the ependyma. Despite decades of research, there is a lack of information concerning the biological basis of the brain abnormalities that are associated with HCP.

Discussion

The present review of current literature discusses the neuropathological changes during gestation following the onset of congenital hydrocephalus and the unanswered questions into the pathophysiology of the disease. A better understanding of those missing points might help create novel therapeutic strategies that can reverse or even prevent the ultimate neurological impairment that affects this population and improve long-term clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

Data supporting the findings of this study are available within the article and its supplementary information.

Abbreviations

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

EEA1:

Early endosomal antigen 1

ETV:

Endoscopic third ventriculostomy

GFAP:

Glial fibrillary acidic protein

HCP:

Hydrocephalus

HTx:

Hydrocephalus Texas

L1CAM:

L1 cell adhesion molecule

NSC:

Neural stem cells

NPC:

Neural progenitor cells

PCCH:

Perspective Classification of Congenital Hydrocephalus

RGM:

Repulsive guidance molecule

SVZ:

Subventricular zone

TNFα:

Tumor necrosis factor alpha

TNFαR1:

Tumor necrosis factor alpha receptor 1

VEGF:

Vascular endothelial growth factor

VZ:

Ventricular zone

References

  1. Adeloye A, Warkany J (1976) Experimental congenital hydrocephalus. A review with special consideration of hydrocephalus produced by zinc deficiency. Childs Brain 2:325–360

    CAS  PubMed  Google Scholar 

  2. Aolad HMD, Inouye M, Darmanto W, Hayasaka S, Murata Y (2000) Hydrocephalus in mice following X-irradiation at early gestational stage: possibly due to persistent deceleration of cell proliferation. J Radiat Res 41:213–226

    Article  CAS  PubMed  Google Scholar 

  3. Baker ML, Payne LC, Baker GN (1961) The inheritance of hydrocephalus in cattle. J Hered 52:135–138

    Article  Google Scholar 

  4. Beni-Adani L (2011) Pathophysiology of fetal hydrocephalus in a developmental rat model of spina bifida. Pediatr Res 70:157–157

    Article  Google Scholar 

  5. Bruni JE, Del Bigio MR, Cardoso ER, Persaud TV (1988) Hereditary hydrocephalus in laboratory animals and humans. Exp Pathol 35:239–246

    Article  CAS  PubMed  Google Scholar 

  6. Bruni JE, Del Bigio MR, Clattenburg RE (1985) Ependyma: normal and pathological. A review of the literature. Brain Res 356:1–19

    Article  CAS  PubMed  Google Scholar 

  7. Castejón OJ, Castejón HV, Castellano A (2001) Oligodendroglial cell damage and demyelination in infant hydrocephalus. An electron microscopic study. J Submicrosc Cytol Pathol 33:33–40

    PubMed  Google Scholar 

  8. Cavalheiro S, da Costa MDS, Mendonça JN, Dastoli PA, Suriano IC, Barbosa MM, Moron AF (2017) Antenatal management of fetal neurosurgical diseases. Childs Nerv Syst 33:1125–1141

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chae TH, Kim S, Marz KE, Hanson PI, Walsh CA (2004) The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Nat Genet 36:264–270

    Article  CAS  PubMed  Google Scholar 

  10. Chamberlain JG (1972) 6-aminonicotinamide (6-AN)-induced abnormalities of the developing ependyma and choroid plexus as seen with the scanning electron microscope. Teratology 6:281–285

    Article  CAS  PubMed  Google Scholar 

  11. Chamberlain JG, Nelson MM (1963) Congenital abnormalities in the rat resulting from single injections of 6-aminonicotinamide during pregnancy. J Exp Zool 153:285–299

    Article  CAS  PubMed  Google Scholar 

  12. Craig A, Lober RM, Grant GA (2015) Complex fetal care: implications of fetal ventriculomegaly: a neurosurgical perspective. NeoReviews 16:254–259

    Article  Google Scholar 

  13. Crews L, Wyss-Coray T, Masliah E (2004) Insights into the pathogenesis of hydrocephalus from transgenic and experimental animal models. Brain Pathol 14:312–316

    Article  CAS  PubMed  Google Scholar 

  14. Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol 85:573–585

    Article  PubMed  Google Scholar 

  15. Del Bigio MR (2001) Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 12:639–649

    Article  PubMed  Google Scholar 

  16. Del Bigio MR (2001) Future directions for therapy of childhood hydrocephalus: a view from the laboratory. Pediatr Neurosurg 34:172–181

    Article  PubMed  Google Scholar 

  17. Del Bigio MR (2010) Ependymal cells: biology and pathology. Acta Neuropathol 119:55–73

    Article  PubMed  Google Scholar 

  18. Del Bigio MR, Crook CR, Buist R (1997) Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations. Exp Neurol 148:256–264

    Article  PubMed  Google Scholar 

  19. Del Bigio MR, Di Curzio DL (2016) Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 13:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Del Bigio MR, Kanfer JN, Zhang YW (1997) Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. J Neuropathol Exp Neurol 56:1053–1066

    Article  PubMed  Google Scholar 

  21. Del Bigio MR, Wilson MJ, Enno T (2003) Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337–346

    Article  PubMed  Google Scholar 

  22. Del Bigio MR, Zhang YW (1998) Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol 154:157–169

    Article  PubMed  Google Scholar 

  23. Deren KE, Packer M, Forsyth J, Milash B, Abdullah OM, Hsu EW, McAllister JP 2nd (2010) Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. Exp Neurol 226:110–119

    Article  PubMed  Google Scholar 

  24. Dewan MC, Rattani A, Mekary R, Glancz LJ, Yunusa I, Baticulon RE, Fieggen G, Wellons JC, Park KB, Warf BC (2018) Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg 1:1–15

    Google Scholar 

  25. Domínguez-Pinos MD, Páez P, Jiménez A-J, Weil B, Arráez M-A, Pérez-Fígares J-M, Rodríguez E-M (2005) Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. J Neuropathol Exp Neurol 64:595–604

    Article  PubMed  Google Scholar 

  26. Duru S, Oria M, Arevalo S, Rodo C, Correa L, Vuletin F, Sanchez-Margallo F, Peiro JL (2019) Comparative study of intracisternal kaolin injection techniques to induce congenital hydrocephalus in fetal lamb. Childs Nerv Syst 35:843–849

    Article  PubMed  Google Scholar 

  27. Duru S, Peiro JL, Oria M, Aydin E, Subasi C, Tuncer C, Rekate HL (2018) Successful endoscopic third ventriculostomy in children depends on age and etiology of hydrocephalus: outcome analysis in 51 pediatric patients. Childs Nerv Syst 34:1521–1528

    Article  PubMed  Google Scholar 

  28. Edwards MS, Harrison MR, Halks-Miller M, Nakayama DK, Berger MS, Glick PL, Chinn DH (1984) Kaolin-induced congenital hydrocephalus in utero in fetal lambs and rhesus monkeys. J Neurosurg 60:115–122

    Article  CAS  PubMed  Google Scholar 

  29. Emery SP, Greene S, Murdoch G, Wiley CA (2020) Histologic appearance of iatrogenic obstructive hydrocephalus in the fetal lamb model. Fetal Diagn Ther 47:7–14

    Article  PubMed  Google Scholar 

  30. Ferland RJ, Batiz LF, Neal J, Lian G, Bundock E, Lu J, Hsiao Y-C, Diamond R, Mei D, Banham AH, Brown PJ, Vanderburg CR, Joseph J, Hecht JL, Folkerth R, Guerrini R, Walsh CA, Rodriguez EM, Sheen VL (2009) Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18:497–516

    Article  CAS  PubMed  Google Scholar 

  31. Furey CG, Zeng X, Dong W, Jin SC, Choi J, Timberlake AT, Dunbar AM, Allocco AA, Günel M, Lifton RP, Kahle KT (2018) Human genetics and molecular mechanisms of congenital hydrocephalus. World Neurosurg 119:441–443

    Article  PubMed  Google Scholar 

  32. Gänzler-Odenthal SI, Redies C (1998) Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J Neurosci 18:5415–5425

    Article  PubMed  PubMed Central  Google Scholar 

  33. Garrido-Mesa N, Zarzuelo A, Gálvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169:337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gato A, Moro JA, Alonso MI, Bueno D, De La Mano A, Martín C (2005) Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec A Discov Mol Cell Evol Biol 284:475–484

    Article  PubMed  Google Scholar 

  35. Goergen S (2018) Outcome of fetuses with prenatal diagnosis of isolated severe bilateral ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol 52:165–173

    Article  Google Scholar 

  36. Goto J, Tezuka T, Nakazawa T, Sagara H, Yamamoto T (2008) Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development. Mol Cell Neurosci 38:203–212

    Article  CAS  PubMed  Google Scholar 

  37. Gu C, Hao X, Li J, Hua Y, Keep RF, Xi G (2019) Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats. J Cereb Blood Flow Metab 39:1936–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guerra M (2014) Neural stem cells: are they the hope of a better life for patients with fetal-onset hydrocephalus? Fluids Barriers CNS 11:7

    Article  PubMed  PubMed Central  Google Scholar 

  39. Guerra M, Blázquez JL, Rodríguez EM (2017) Blood–brain barrier and foetal-onset hydrocephalus, with a view on potential novel treatments beyond managing CSF flow. Fluids and Barriers of the CNS 14:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guerra MM, Henzi R, Ortloff A, Lichtin N, Vío K, Jiménez AJ, Dominguez-Pinos MD, González C, Jara MC, Hinostroza F, Rodríguez S, Jara M, Ortega E, Guerra F, Sival DA, den Dunnen WFA, Pérez-Fígares JM, McAllister JP, Johanson CE, Rodríguez EM (2015) Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol 74:653–671

    Article  PubMed  Google Scholar 

  41. Henzi R, Guerra M, Vío K, González C, Herrera C, McAllister P, Johanson C, Rodríguez EM (2018) Neurospheres from neural stem/neural progenitor cells (NSPCs) of non-hydrocephalic HTx rats produce neurons, astrocytes and multiciliated ependyma: the cerebrospinal fluid of normal and hydrocephalic rats supports such a differentiation. Cell Tissue Res 373:421–438

    Article  CAS  PubMed  Google Scholar 

  42. Henzi R, Vío K, Jara C, Johanson CE, McAllister JP, Rodríguez EM, Guerra M (2020) Neural stem cell therapy of foetal onset hydrocephalus using the HTx rat as experimental model. Cell Tissue Res. https://doi.org/10.1007/s00441-020-03182-0

  43. Hochwald GM (1985) Animal models of hydrocephalus: recent developments. Exp Biol Med 178:1–11

    Article  CAS  Google Scholar 

  44. Jiménez AJ, Domínguez-Pinos M-D, Guerra MM, Fernández-Llebrez P, Pérez-Fígares J-M (2014) Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2:e2842601–e2842614

    Article  Google Scholar 

  45. Jiménez A-J, Rodríguez-Pérez L-M, Domínguez-Pinos M-D, Gómez-Roldán M-C, García-Bonilla M, Ho-Plagaro A, Roales-Buján R, Jiménez S, Roquero-Mañueco M-C, Martínez-León M-I, García-Martín M-L, Cifuentes M, Ros B, Arráez M-Á, Vitorica J, Gutiérrez A, Pérez-Fígares J-M (2014) Increased levels of tumour necrosis factor alpha (TNFα) but not transforming growth factor-beta 1 (TGFβ1) are associated with the severity of congenital hydrocephalus in the hyh mouse. Neuropathol Appl Neurobiol 40:911–932

    Article  CAS  PubMed  Google Scholar 

  46. Jiménez AJ, Tomé M, Páez P, Wagner C, Rodríguez S, Fernández-Llebrez P, Rodríguez EM, Pérez-Fígares JM (2001) A programmed ependymal denudation precedes congenital hydrocephalus in thehyhMutant mouse. J Neuropathol Exp Neurol 60:1105–1119

    Article  PubMed  Google Scholar 

  47. Johnson RT, Johnson KP, Edmonds CJ (1967) Virus-induced hydrocephalus: development of aqueductal stenosis in hamsters after mumps infection. Science 157:1066–1067

    Article  CAS  PubMed  Google Scholar 

  48. Jones HC, Depelteau JS, Carter BJ, Lopman BA, Morel L (2001) Genome-wide linkage analysis of inherited hydrocephalus in the H-Tx rat. Mamm Genome 12:22–26

    Article  CAS  PubMed  Google Scholar 

  49. Jones HC, Klinge PM (2008) Hydrocephalus 2008, 17–20th September, Hannover Germany: a conference report. Cerebrospinal Fluid Res 5:19

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jones HC, Lopman BA, Jones TW, Carter BJ, Depelteau JS, Morel L (2000) The expression of inherited hydrocephalus in H-Tx rats. Childs Nerv Syst 16:578–584

    Article  CAS  PubMed  Google Scholar 

  51. Jones HC, Yehia B, Chen G-F, Carter BJ (2004) Genetic analysis of inherited hydrocephalus in a rat model. Exp Neurol 190:79–90

    Article  CAS  PubMed  Google Scholar 

  52. Juul SE, Pet GC (2015) Erythropoietin and neonatal Neuroprotection. Clin Perinatol 42:469–481

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kee N, Wilson N, De Vries M, Bradford D, Key B, Cooper HM (2008) Neogenin and RGMa control neural tube closure and neuroepithelial morphology by regulating cell polarity. J Neurosci 28:12643–12653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Khan OH, Enno TL, Del Bigio MR (2006) Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol 200:311–320

    Article  CAS  PubMed  Google Scholar 

  55. Khera KS, Tryphonas L (1977) Ethylenethiourea-induced hydrocephalus: pre- and postnatal pathogenesis in offspring from rats given a single oral dose during pregnancy. Toxicol Appl Pharmacol 42:85–97

    Article  CAS  PubMed  Google Scholar 

  56. Kohn DF, Chinookoswong N, Chou SM (1981) A new model of congenital hydrocephalus in the rat. Acta Neuropathol 54:211–218

    Article  CAS  PubMed  Google Scholar 

  57. Kohn DF, Chinookoswong N, Chou SM (1984) Animal model of human disease. Congenital hydrocephalus. Am J Pathol 114:184–185

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Krous HF, Altshuler G, London WT, Palmer AE, Fucillo DA, Sever JL (1978) Congenital hydrocephalus. Animal model: congenital hydrocephalus produced by attenuated influenza A virus vaccine in rhesus monkeys. Am J Pathol 92:317–320

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lindauer MA, Griffith JQ (1938) Cerebrospinal pressure, hydrocephalus and blood pressure in the cat following intracisternal injection of colloidal kaolin. Exp Biol Med 39:547–549

    Article  Google Scholar 

  60. Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q (2014) Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 9:2241–2257

    Article  PubMed  PubMed Central  Google Scholar 

  61. Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19–26

    Article  CAS  PubMed  Google Scholar 

  62. Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M (2017) Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther 11:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mataró M, Junqué C, Poca MA, Sahuquillo J (2001) Neuropsychological findings in congenital and acquired childhood hydrocephalus. Neuropsychol Rev 11:169–178

    Article  PubMed  Google Scholar 

  64. McAllister JP 2nd, Miller JM (2010) Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res 7:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Millen JW, Woollam DH, Lamming GE (1953) Hydrocephalus associated with deficiency of vitamin a. Lancet 265:1234–1236

    Article  CAS  PubMed  Google Scholar 

  66. Miller JM, McAllister JP 2nd (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Morante-Redolat JM, Porlan E (2019) Neural stem cell regulation by adhesion molecules within the subependymal niche. Front Cell Dev Biol 7:102

    Article  PubMed  PubMed Central  Google Scholar 

  68. Munch TN, Rostgaard K, Rasmussen M-LH, Wohlfahrt J, Juhler M, Melbye M (2012) Familial aggregation of congenital hydrocephalus in a nationwide cohort. Brain 135:2409–2415

    Article  PubMed  Google Scholar 

  69. Neubauer A-P, Voss W, Wachtendorf M, Jungmann T (2010) Erythropoietin improves neurodevelopmental outcome of extremely preterm infants. Ann Neurol 67:657–666

    CAS  PubMed  Google Scholar 

  70. Newberne PM (1962) The subcommissural organ of the vitamin B12-deficient rat. J Nutr 76:393–413

    Article  CAS  PubMed  Google Scholar 

  71. Oi S (2005) Classification and definition of hydrocephalus: origin, controversy, and assignment of the terminology. In: Cinalli G., Sainte-Rose C., Maixner W.J. (ed) Pediatric hydrocephalus. Springer, Milano, pp 95–111

  72. Oi S (2011) Classification of hydrocephalus: critical analysis of classification categories and advantages of “Multi-categorical Hydrocephalus Classification” (Mc HC). Childs Nerv Syst 27:1523–1533

    Article  PubMed  Google Scholar 

  73. Oi S, Sato O, Matsumoto S (1994) A new classification for congenital hydrocephalus : perspective classification of congenital hydrocephalus (PCCH) and postnatal prognosis [Part1] A proposal of a new classification of fetal/neonatal/infantile hydrocephalus based on neuronal maturation on neuronal maturation process and chronological changes. Japanese Journal of Neurosurgery 3:122–127

    Article  Google Scholar 

  74. Oi S, Shizuo OI (2010) Hydrocephalus research update. Neurol Med Chir 50:859–869

    Article  Google Scholar 

  75. Oi S, Yamada H, Sato O, Matsumoto S (1996) Experimental models of congenital hydrocephalus and comparable clinical problems in the fetal and neonatal periods. Childs Nerv Syst 12:292–302

    Article  CAS  PubMed  Google Scholar 

  76. O’Leary CJ, Nourse CC, Lee NK, White A, Langford M, Sempert K, Cole SJ, Cooper HM (2017) Neogenin recruitment of the WAVE regulatory complex to ependymal and radial progenitor adherens junctions prevents hydrocephalus. Cell Rep 20:370–383

    Article  CAS  PubMed  Google Scholar 

  77. Oria M, Duru S, Scorletti F, Vuletin F, Encinas JL, Correa-Martín L, Bakri K, Jones HN, Sanchez-Margallo FM, Peiro JL (2019) Intracisternal BioGlue injection in the fetal lamb: a novel model for creation of obstructive congenital hydrocephalus without additional chemically induced neuroinflammation. J Neurosurg Pediatr 1–11

  78. Páez P, Bátiz L-F, Roales-Buján R, Rodríguez-Pérez L-M, Rodríguez S, Jiménez AJ, Rodríguez EM, Pérez-Fígares JM (2007) Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol 66:1082–1092

    Article  PubMed  Google Scholar 

  79. Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF (2009) Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 23:35–58

    Article  CAS  PubMed  Google Scholar 

  80. Pisapia JM, Sinha S, Zarnow DM, Johnson MP, Heuer GG (2017) Fetal ventriculomegaly: diagnosis, treatment, and future directions. Childs Nerv Syst 33:1113–1123

    Article  PubMed  Google Scholar 

  81. Pudenz RH (1981) The surgical treatment of hydrocephalus—an historical review. Surg Neurol 15:15–26

    Article  CAS  PubMed  Google Scholar 

  82. Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  83. Roales-Buján R, Páez P, Guerra M, Rodríguez S, Vío K, Ho-Plagaro A, García-Bonilla M, Rodríguez-Pérez L-M, Domínguez-Pinos M-D, Rodríguez E-M, Pérez-Fígares J-M, Jiménez A-J (2012) Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol 124:531–546

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rodríguez EM, Guerra MM (2017) Neural stem cells and fetal-onset hydrocephalus. Pediatr Neurosurg 52:446–461

    Article  PubMed  Google Scholar 

  85. Rodríguez EM, Guerra MM, Vío K, González C, Ortloff A, Bátiz LF, Rodríguez S, Jara MC, Muñoz RI, Ortega E, Jaque J, Guerra F, Sival DA, den Dunnen WFA, Jiménez AJ, Domínguez-Pinos MD, Pérez-Fígares JM, McAllister JP, Johanson C (2012) A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus. Biol Res 45:231–241

    Article  CAS  PubMed  Google Scholar 

  86. Rouach N, Avignone E, Même W, Koulakoff A, Venance L, Blomstrand F, Giaume C (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94:457–475

    Article  CAS  PubMed  Google Scholar 

  87. Schrander-Stumpel C, Fryns JP (1998) Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur J Pediatr 157:355–362

    Article  CAS  PubMed  Google Scholar 

  88. Sival DA, Felderhoff-Müser U, Schmitz T, Hoving EW, Schaller C, Heep A (2008) Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFNgamma in cerebrospinal fluid. Cerebrospinal Fluid Res 5:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Socci DJ, Bjugstad KB, Jones HC, Pattisapu JV, Arendash GW (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol 155:109–117

    Article  CAS  PubMed  Google Scholar 

  90. Takeuchi IK, Murakami U (1979) Two types of congenital hydrocephalus induced in rats by X-irradiation in utero: electron microscopic study on the telencephalic wall. J Anat 128:693–708

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Takeuchi IK, Takeuchi YK (1986) Congenital hydrocephalus following X-irradiation of pregnant rats on an early gestational day. Neurobehav Toxicol Teratol 8:143–150

    CAS  PubMed  Google Scholar 

  92. Tonetti DA, Richter B, Andrews E, Xu C, Emery SP, Greene S (2018) Clinical outcomes of isolated congenital Aqueductal stenosis. World Neurosurg 114:e976–e981

    Article  PubMed  Google Scholar 

  93. Tully HM, Dobyns WB (2014) Infantile hydrocephalus: a review of epidemiology, classification and causes. European Journal of Medical Genetics 57:359–368

    Article  PubMed  PubMed Central  Google Scholar 

  94. Verkman AS, Tradtrantip L, Smith AJ, Yao X (2017) Aquaporin water channels and hydrocephalus. Pediatr Neurosurg 52:409–416

    Article  PubMed  Google Scholar 

  95. Vinchon M, Rekate H, Kulkarni AV (2012) Pediatric hydrocephalus outcomes: a review. Fluids and Barriers of the CNS 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wagner C, Batiz LF, Rodríguez S, Jiménez AJ, Páez P, Tomé M, Pérez-Fígares JM, Rodríguez EM (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040

    Article  CAS  PubMed  Google Scholar 

  97. Wang K-C, Lee JY, Kim S-K, Phi JH, Cho B-K (2011) Fetal ventriculomegaly: postnatal management. Childs Nerv Syst 27:1571–1573

    Article  PubMed  Google Scholar 

  98. Weller RO, Wisniewski H (1969) Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92:819–828

    Article  CAS  PubMed  Google Scholar 

  99. Williams MA, McAllister JP, Walker ML, Kranz DA, Bergsneider M, Del Bigio MR, Fleming L, Frim DM, Gwinn K, Kestle JRW, Luciano MG, Madsen JR, Lou Oster-Granite M, Spinella G (2007) Priorities for hydrocephalus research: report from a National Institutes of Health–sponsored workshop. J Neurosurg Pediatr 107:345–357

    Article  Google Scholar 

  100. Wilsch-Bräuninger M, Florio M, Huttner WB (2016) Neocortex expansion in development and evolution — from cell biology to single genes. Curr Opin Neurobiol 39:122–132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate Prof. Helen Jones for the invaluable help and advice during manuscript editing.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: M.O.

Acquisition of data: MF.V., M. M, M.O

Analysis and interpretation of data: MF.V., M. M, M.O.

First draft of the manuscript: MF.V.

Drafting of the manuscript: MF.V., M. M, M.O.

Critical revision of the manuscript for important intellectual content: MF.V., M. M, M.O.

Study supervision: M.O.

Corresponding author

Correspondence to Marc Oria.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

The authors read and approved the final manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varela, M.F., Miyabe, M.M. & Oria, M. Fetal brain damage in congenital hydrocephalus. Childs Nerv Syst 36, 1661–1668 (2020). https://doi.org/10.1007/s00381-020-04657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04657-9

Keywords

Navigation