Skip to main content

Advertisement

Log in

The development of vision between nature and nurture: clinical implications from visual neuroscience

  • Review Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Vision is an adaptive function and should be considered a prerequisite for neurodevelopment because it permits the organization and the comprehension of the sensory data collected by the visual system during daily life. For this reason, the influence of visual functions on neuromotor, cognitive, and emotional development has been investigated by several studies that have highlighted how visual functions can drive the organization and maturation of human behavior. Recent studies on animals and human models have indicated that visual functions mature gradually during post-natal life, and its development is closely linked to environment and experience.

Discussion

The role of vision in early brain development and some of the neuroplasticity mechanisms that have been described in the presence of cerebral damage during childhood are analyzed in this review, according to a neurorehabilitation prospective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barca L, Cappelli FR, di Giulio P, Staccioli S, Castelli E (2010) Outpatient assessment of neurovisual functions in children with cerebral palsy. Res Dev Disabil 31(2):488–495

    PubMed  Google Scholar 

  2. Kiorpes L (2016) The puzzle of visual development: behavior and neural limits. J Neurosci 36(45):11384–11393

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L (2010) Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ 17(7):1092–1103

    CAS  PubMed  Google Scholar 

  4. Mercuri E et al (2007) The development of vision. Early Hum Dev 83(12):795–800

    PubMed  Google Scholar 

  5. Braddick O, Atkinson J (2011) Development of human visual function. Vis Res 51(13):1588–1609

    PubMed  Google Scholar 

  6. Atkinson J (1984) Human visual development over the first 6 months of life. A review and a hypothesis. Hum Neurobiol 3(2):61–74

    CAS  PubMed  Google Scholar 

  7. Spillmann L (2014) Receptive fields of visual neurons: the early years. Perception 43(11):1145–1176

    PubMed  Google Scholar 

  8. Martinez LM, Alonso JM (2003) Complex receptive fields in primary visual cortex. Neuroscientist 9(5):317–331

    PubMed  PubMed Central  Google Scholar 

  9. Berardi N, Pizzorusso T, Ratto GM, Maffei L (2003) Molecular basis of plasticity in the visual cortex. Trends Neurosci 26(7):369–378

    CAS  PubMed  Google Scholar 

  10. May A, Hajak G, Gänssbauer S, Steffens T, Langguth B, Kleinjung T, Eichhammer P (2007) Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb Cortex 17(1):205–210

    CAS  PubMed  Google Scholar 

  11. Nabel EM, Morishita H (2013) Regulating critical period plasticity: insight from the visual system to fear circuitry for therapeutic interventions. Front Psychiatry 4:146

    PubMed  PubMed Central  Google Scholar 

  12. Morrone MC (2010) Brain development: critical periods for cross-sensory plasticity. Curr Biol 20(21):R934–R936

    CAS  PubMed  Google Scholar 

  13. Daw NW (1998) Critical periods and amblyopia. Arch Ophthalmol 116(4):502–505

    CAS  PubMed  Google Scholar 

  14. Kiorpes L (2015) Visual development in primates: neural mechanisms and critical periods. Dev Neurobiol 75(10):1080–1090

    PubMed  PubMed Central  Google Scholar 

  15. Voss P (2013) Sensitive and critical periods in visual sensory deprivation. Front Psychol 4:664

    PubMed  PubMed Central  Google Scholar 

  16. Kupers R, Ptito M (2014) Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev 41:36–52

    PubMed  Google Scholar 

  17. Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11(1):44–52

    CAS  PubMed  Google Scholar 

  18. Werth R (2008) Cerebral blindness and plasticity of the visual system in children. A review of visual capacities in patients with occipital lesions, hemispherectomy or hydranencephaly. Restor Neurol Neurosci 26(4–5):377–389

    PubMed  Google Scholar 

  19. Lunghi C, Sale A (2015) A cycling lane for brain rewiring. Curr Biol 25(23):R1122–R1123

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cancedda L et al (2004) Acceleration of visual system development by environmental enrichment. J Neurosci 24(20):4840–4848

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Guzzetta A, Baldini S, Bancale A, Baroncelli L, Ciucci F, Ghirri P, Putignano E, Sale A, Viegi A, Berardi N, Boldrini A, Cioni G, Maffei L (2009) Massage accelerates brain development and the maturation of visual function. J Neurosci 29(18):6042–6051

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Purpura G, Tinelli F, Bargagna S, Bozza M, Bastiani L, Cioni G (2014) Effect of early multisensory massage intervention on visual functions in infants with down syndrome. Early Hum Dev 90(12):809–813

    PubMed  Google Scholar 

  23. Baroncelli L, Sale A, Viegi A, Maya Vetencourt JF, de Pasquale R, Baldini S, Maffei L (2010) Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp Neurol 226(1):100–109

    PubMed  Google Scholar 

  24. Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10(1):138–145

    CAS  PubMed  Google Scholar 

  25. Sugita Y (2009) Innate face processing. Curr Opin Neurobiol 19(1):39–44

    CAS  PubMed  Google Scholar 

  26. Simion F, Leo I, Turati C, Valenza E, Dalla Barba B (2007) How face specialization emerges in the first months of life. Prog Brain Res 164:169–185

    PubMed  Google Scholar 

  27. Valenza E, Simion F, Cassia VM, Umiltà C (1996) Face preference at birth. J Exp Psychol Hum Percept Perform 22(4):892–903

    CAS  PubMed  Google Scholar 

  28. Fraiberg S (1977) Insights from the blind. Basic Books, New York

    Google Scholar 

  29. Land MF (2006) Eye movements and the control of actions in everyday life. Prog Retin Eye Res 25(3):296–324

    PubMed  Google Scholar 

  30. Hood B, Atkinson J (1990) Sensory visual loss and cognitive deficits in the selective attentional system of normal infants and neurologically impaired children. Dev Med Child Neurol 32(12):1067–1077

    CAS  PubMed  Google Scholar 

  31. Tadic V, Pring L, Dale N (2010) Are language and social communication intact in children with congenital visual impairment at school age? J Child Psychol Psychiatry 51(6):696–705

    PubMed  Google Scholar 

  32. Prechtl HF, Cioni G, Einspieler C, Bos AF, Ferrari F (2001) Role of vision on early motor development: lessons from the blind. Dev Med Child Neurol 43(3):198–201

    CAS  PubMed  Google Scholar 

  33. Braddick O, Atkinson J (2013) Visual control of manual actions: brain mechanisms in typical development and developmental disorders. Dev Med Child Neurol 55(Suppl 4):13–18

    PubMed  Google Scholar 

  34. Babinsky E, Braddick O, Atkinson J (2012) Infants and adults reaching in the dark. Exp Brain Res 217(2):237–249

    PubMed  Google Scholar 

  35. Hallemans A, Ortibus E, Truijen S, Meire F (2011) Development of independent locomotion in children with a severe visual impairment. Res Dev Disabil 32(6):2069–2074

    PubMed  Google Scholar 

  36. Dale N, Sakkalou E, O'Reilly M, Springall C, de Haan M, Salt A (2017) Functional vision and cognition in infants with congenital disorders of the peripheral visual system. Dev Med Child Neurol 59(7):725–731

    PubMed  Google Scholar 

  37. Mercuri E, Haataja L, Guzzetta A, Anker S, Cowan F, Rutherford M, Andrew R, Braddick O, Cioni G, Dubowitz L, Atkinson J (1999) Visual function in term infants with hypoxic-ischaemic insults: correlation with neurodevelopment at 2 years of age. Arch Dis Child Fetal Neonatal Ed 80(2):F99–F104

  38. Guzzetta A, Mazzotti S, Tinelli F, Bancale A, Ferretti G, Battini R, Bartalena L, Boldrini A, Cioni G (2006) Early assessment of visual information processing and neurological outcome in preterm infants. Neuropediatrics 37(5):278–285

  39. Cass HD, Sonksen PM, McConachie HR (1994) Developmental setback in severe visual impairment. Arch Dis Child 70(3):192–196

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dale N, Sonksen P (2002) Developmental outcome, including setback, in young children with severe visual impairment. Dev Med Child Neurol 44(9):613–622

    PubMed  Google Scholar 

  41. Fazzi E et al (2007) Leber’s congenital amaurosis: is there an autistic component? Dev Med Child Neurol 49(7):503–507

    CAS  PubMed  Google Scholar 

  42. Do B et al (2017) Systematic review and meta-analysis of the association of autism spectrum disorder in visually or hearing impaired children. Ophthalmic Physiol Opt 37(2):212–224

    PubMed  Google Scholar 

  43. Mukaddes NM, Kilincaslan A, Kucukyazici G, Sevketoglu T, Tuncer S (2007) Autism in visually impaired individuals. Psychiatry Clin Neurosci 61(1):39–44

    PubMed  Google Scholar 

  44. Bathelt J, de Haan M, Dale NJ (2019) Adaptive behaviour and quality of life in school-age children with congenital visual disorders and different levels of visual impairment. Res Dev Disabil 85:154–162

    PubMed  Google Scholar 

  45. Rowe FJ et al (2018) Visual impairment screening assessment (VISA) tool: pilot validation. BMJ Open 8(3):e020562

    PubMed  PubMed Central  Google Scholar 

  46. Ricci D, Romeo DM, Gallini F, Groppo M, Cesarini L, Pisoni S, Serrao F, Papacci P, Contaldo I, Perrino F, Brogna C, Bianco F, Baranello G, Sacco A, Quintiliani M, Ometto A, Cilauro S, Mosca F, Romagnoli C, Romeo MG, Cowan F, Cioni G, Ramenghi L, Mercuri E (2011) Early visual assessment in preterm infants with and without brain lesions: correlation with visual and neurodevelopmental outcome at 12 months. Early Hum Dev 87(3):177–182

    PubMed  Google Scholar 

  47. Guzzetta A, D’Acunto G, Rose S, Tinelli F, Boyd R, Cioni G (2010) Plasticity of the visual system after early brain damage. Dev Med Child Neurol 52(10):891–900

    PubMed  Google Scholar 

  48. Matsuba C, Soul J (2010) Clinical manifestation of cerebral visual impairment. In: Dutton GN, Bax M (eds) visual impairment in children due to damage to the brain. Mac Keith Press, London

    Google Scholar 

  49. Guzzetta A, Fazzi B, Mercuri E, Bertuccelli B, Canapicchi R, van Hof-van Duin J, Cioni G (2001) Visual function in children with hemiplegia in the first years of life. Dev Med Child Neurol 43(5):321–329

    CAS  PubMed  Google Scholar 

  50. Zihl J (1995) Visual scanning behavior in patients with homonymous hemianopia. Neuropsychologia 33(3):287–303

    CAS  PubMed  Google Scholar 

  51. Cowey A (2010) The blindsight saga. Exp Brain Res 200(1):3–24

    PubMed  Google Scholar 

  52. Stoerig P, Cowey A (2007) Blindsight. Curr Biol 17(19):R822–R824

    CAS  PubMed  Google Scholar 

  53. Weiskrantz L (1996) Blindsight revisited. Curr Opin Neurobiol 6(2):215–220

    CAS  PubMed  Google Scholar 

  54. Cowey A, Stoerig P (1991) The neurobiology of blindsight. Trends Neurosci 14(4):140–145

    CAS  PubMed  Google Scholar 

  55. Tinelli F, Guzzetta A, Bertini C, Ricci D, Mercuri E, Ladavas E, Cioni G (2011) Greater sparing of visual search abilities in children after congenital rather than acquired focal brain damage. Neurorehabil Neural Repair 25(8):721–728

    PubMed  Google Scholar 

  56. Muckli L, Naumer MJ, Singer W (2009) Bilateral visual field maps in a patient with only one hemisphere. Proc Natl Acad Sci U S A 106(31):13034–13039

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tinelli F, Cicchini GM, Arrighi R, Tosetti M, Cioni G, Morrone MC (2013) Blindsight in children with congenital and acquired cerebral lesions. Cortex 49(6):1636–1647

    PubMed  Google Scholar 

  58. Ptito A, Leh SE (2007) Neural substrates of blindsight after hemispherectomy. Neuroscientist 13(5):506–518

    PubMed  Google Scholar 

  59. Sahraie A, Hibbard PB, Trevethan CT, Ritchie KL, Weiskrantz L (2010) Consciousness of the first order in blindsight. Proc Natl Acad Sci U S A 107(49):21217–21222

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bourne JA, Morrone MC (2017) Plasticity of visual pathways and function in the developing brain: is the Pulvinar a crucial player? Front Syst Neurosci 11:3

    PubMed  PubMed Central  Google Scholar 

  61. Payne BR, Lomber SG, Macneil MA, Cornwell P (1996) Evidence for greater sight in blindsight following damage of primary visual cortex early in life. Neuropsychologia 34(8):741–774

    CAS  PubMed  Google Scholar 

  62. Sorenson KM, Rodman HR (1999) A transient geniculo-extrastriate pathway in macaques? Implications for ‘blindsight’. Neuroreport 10(16):3295–3299

    CAS  PubMed  Google Scholar 

  63. Lyon DC, Nassi JJ, Callaway EM (2010) A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron 65(2):270–279

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tomaiuolo F et al (1997) Blindsight in hemispherectomized patients as revealed by spatial summation across the vertical meridian. Brain 120(Pt 5):795–803

    PubMed  Google Scholar 

  65. Tamietto M, Cauda F, Corazzini LL, Savazzi S, Marzi CA, Goebel R, Weiskrantz L, de Gelder B (2010) Collicular vision guides nonconscious behavior. J Cogn Neurosci 22(5):888–902

    PubMed  Google Scholar 

  66. Ajina S, Bridge H (2018) Subcortical pathways to extrastriate visual cortex underlie residual vision following bilateral damage to V1. Neuropsychologia 128:140–149

    PubMed  Google Scholar 

  67. Ajina S et al (2015) Human blindsight is mediated by an intact geniculo-extrastriate pathway. Elife 4

  68. Mikellidou K, Frijia F, Montanaro D, Greco V, Burr DC, Morrone MC (2018) Cortical BOLD responses to moderate- and high-speed motion in the human visual cortex. Sci Rep 8(1):8357

    PubMed  PubMed Central  Google Scholar 

  69. Mikellidou K, Arrighi R, Aghakhanyan G, Tinelli F, Frijia F, Crespi S, de Masi F, Montanaro D, Morrone MC (2019) Plasticity of the human visual brain after an early cortical lesion. Neuropsychologia 128:166–177

    CAS  PubMed  Google Scholar 

  70. Warraich Z, Kleim JA (2010) Neural plasticity: the biological substrate for neurorehabilitation. PM R 2(12 Suppl 2):S208–S219

    PubMed  Google Scholar 

  71. Hensch TK, Bilimoria PM (2012) Re-opening windows: manipulating critical periods for brain development. Cerebrum 2012:11

    PubMed  PubMed Central  Google Scholar 

  72. Johnston C, Cossette S, Archer J, Ranger M, Nahas-Chebli G (2009) Developing synergy to enhance the impact of nursing intervention research on patient health. Can J Nurs Res 41(4):115–121

    PubMed  Google Scholar 

  73. Dale NJ, Sakkalou E, O'Reilly MA, Springall C, Sakki H, Glew S, Pissaridou E, de Haan M, Salt AT (2019) Home-based early intervention in infants and young children with visual impairment using the developmental journal: longitudinal cohort study. Dev Med Child Neurol 61(6):697–709

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Giulia Purpura was responsible for the idea of this mini review and had the primary responsibility for the analysis of literature and for writing the manuscript. Dr. Francesca Tinelli supervised the design and execution of the review and contributed to the writing of the manuscript for the final version.

Corresponding author

Correspondence to Francesca Tinelli.

Ethics declarations

Conflict of interest

The authors have no present or potential conflict of interest to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purpura, G., Tinelli, F. The development of vision between nature and nurture: clinical implications from visual neuroscience. Childs Nerv Syst 36, 911–917 (2020). https://doi.org/10.1007/s00381-020-04554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04554-1

Keywords

Navigation