Skip to main content

Advertisement

Log in

Prenatal genetic considerations in congenital ventriculomegaly and hydrocephalus

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Fetal ventriculomegaly (VM) is a frequent finding in prenatal ultrasound. Rather than a proper diagnosis, VM is a sonographic sign, making prenatal counseling a complex and challenging undertaking. VM can range from severe pathologic processes leading to severe neurodevelopmental delay to normal variants.

Discussion

A growing number of genetic conditions with different pathophysiological mechanisms, inheritance patterns, and long-term prognosis have been associated both to isolated and complex fetal VM. These include chromosomal abnormalities, copy number variants, and several single gene diseases. In this review, we describe some of the most common genetic conditions associated with fetal VM and provide a simplified diagnostic workflow for the clinician.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cardoza JD, Goldstein RB, Filly RA (1988) Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 169:711–714

    CAS  Google Scholar 

  2. Griffiths PD, Reeves MJ, Morris JE et al (2010) A prospective study of fetuses with isolated ventriculomegaly investigated by antenatal sonography and in utero MR imaging. Am J Neuroradiol 31:106–111

    CAS  Google Scholar 

  3. Gaglioti P, Oberto M, Todros T (2009) The significance of fetal ventriculomegaly: etiology, short- and long-term outcomes. Prenat Diagn 29:381–388

    Google Scholar 

  4. Van den Veyver IB (2019) Prenatally diagnosed developmental abnormalities of the central nervous system and genetic syndromes: a practical review. Prenat Diagn. https://doi.org/10.1002/pd.5520

  5. Falip C, Blanc N, Maes E et al (2007) Postnatal clinical and imaging follow-up of infants with prenatal isolated mild ventriculomegaly: a series of 101 cases. Pediatr Radiol 37:981–989

    Google Scholar 

  6. Griffiths PD, Brackley K, Bradburn M et al (2017) Anatomical subgroup analysis of the MERIDIAN cohort: ventriculomegaly. Ultrasound Obstet Gynecol 50:736–744

    CAS  Google Scholar 

  7. Schrander-Stumpel C, Fryns JP (1998) Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur J Pediatr 157:355–362

    CAS  Google Scholar 

  8. Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 5:2

    PubMed  PubMed Central  Google Scholar 

  9. International Society of Ultrasound in Obstetrics & Gynecology Education Committee (2007) Sonographic examination of the fetal central nervous system: guidelines for performing the “basic examination” and the “fetal neurosonogram.”. Ultrasound Obstet Gynecol 29:109–116

    Google Scholar 

  10. Guibaud L (2009) Fetal cerebral ventricular measurement and ventriculomegaly: time for procedure standardization. Ultrasound Obstet Gynecol 34:127–130

    CAS  Google Scholar 

  11. Nyberg DA, Luthy DA, Cheng EY et al (1995) Role of prenatal ultrasonography in women with positive screen for Down syndrome on the basis of maternal serum markers. Am J Obstet Gynecol 173:1030–1035

    CAS  Google Scholar 

  12. Deren O, Mahoney MJ, Copel JA, Bahado-Singh RO (1998) Subtle ultrasonographic anomalies: do they improve the Down syndrome detection rate? Am J Obstet Gynecol 178:441–445

    CAS  Google Scholar 

  13. Sohl BD, Scioscia AL, Budorick NE, Moore TR (1999) Utility of minor ultrasonographic markers in the prediction of abnormal fetal karyotype at a prenatal diagnostic center. Am J Obstet Gynecol 181:898–903

    CAS  Google Scholar 

  14. Wax JR, Guilbert J, Mather J et al (2000) Efficacy of community-based second trimester genetic ultrasonography in detecting the chromosomally abnormal fetus. J Ultrasound Med 19:689–694

    CAS  Google Scholar 

  15. Aagaard-Tillery KM, Malone FD, Nyberg DA et al (2009) Role of second-trimester genetic sonography after Down syndrome screening. Obstet Gynecol 114:1189–1196

    PubMed  PubMed Central  Google Scholar 

  16. Duan H-L, Zhu X-Y, Zhu Y-J et al (2019) The application of chromosomal microarray analysis to the prenatal diagnosis of isolated mild ventriculomegaly. Taiwan J Obstet Gynecol 58:251–254

    Google Scholar 

  17. Pagani G, Thilaganathan B, Prefumo F (2014) Neurodevelopmental outcome in isolated mild fetal ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol 44:254–260

    CAS  Google Scholar 

  18. Melchiorre K, Bhide A, Gika AD et al (2009) Counseling in isolated mild fetal ventriculomegaly. Ultrasound Obstet Gynecol 34:212–224

    CAS  Google Scholar 

  19. Zhao D, Cai A, Wang B et al (2018) Presence of chromosomal abnormalities in fetuses with isolated ventriculomegaly on prenatal ultrasound in China. Mol Genet Genomic Med 6:1015–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  20. D’Addario V, Rossi AC (2012) Neuroimaging of ventriculomegaly in the fetal period. Semin Fetal Neonatal Med 17:310–318

    Google Scholar 

  21. Pilu G, Falco P, Gabrielli S et al (1999) The clinical significance of fetal isolated cerebral borderline ventriculomegaly: report of 31 cases and review of the literature. Ultrasound Obstet Gynecol 14:320–326

    CAS  Google Scholar 

  22. Iwamoto H, Muroi A, Sekine T et al (2019) Unusual form of obstructive hydrocephalus in association with 6q terminal deletion syndrome: a case report and literature review. Pediatr Neurosurg 54:419–423

    Google Scholar 

  23. Bromley B, Frigoletto FD, Benacerraf BR (1991) Mild fetal lateral cerebral ventriculomegaly: clinical course and outcome. Am J Obstet Gynecol 164:863–867

    CAS  Google Scholar 

  24. Graham E, Duhl A, Ural S et al (2001) The degree of antenatal ventriculomegaly is related to pediatric neurological morbidity. J Matern Fetal Neonatal Med 10:258–263

    CAS  Google Scholar 

  25. Hannon T, Tennant PWG, Rankin J, Robson SC (2012) Epidemiology, natural history, progression, and postnatal outcome of severe fetal ventriculomegaly. Obstet Gynecol 120:1345–1353

    Google Scholar 

  26. Devaseelan P, Cardwell C, Bell B, Ong S (2010) Prognosis of isolated mild to moderate fetal cerebral ventriculomegaly: a systematic review. J Perinat Med 38:401–409

    Google Scholar 

  27. Sethna F, Tennant PWG, Rankin JC, Robson S (2011) Prevalence, natural history, and clinical outcome of mild to moderate ventriculomegaly. Obstet Gynecol 117:867–876

    Google Scholar 

  28. Nicolaides KH, Berry S, Snijders RJ et al (1990) Fetal lateral cerebral ventriculomegaly: associated malformations and chromosomal defects. Fetal Diagn Ther 5:5–14

    CAS  Google Scholar 

  29. Gezer C, Ekin A, Ozeren M et al (2014) Chromosome abnormality incidence in fetuses with cerebral ventriculomegaly. J Obstet Gynaecol 34:387–391

    CAS  Google Scholar 

  30. Wang Y, Cao L, Liang D et al (2018) Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: a prospective cohort study. Am J Obstet Gynecol 218:244.e1–244.e17

    CAS  Google Scholar 

  31. Wang Y, Hu P, Xu Z (2018) Copy number variations and fetal ventriculomegaly. Curr Opin Obstet Gynecol 30:104–110

    Google Scholar 

  32. Van den Hof MC, Wilson RD, Diagnostic Imaging Committee, Society of Obstetricians and Gynaecologists of Canada, Genetics Committee, Society of Obstetricians and Gynaecologists of Canada (2005) Fetal soft markers in obstetric ultrasound. J Obstet Gynaecol Can 27:592–636

    Google Scholar 

  33. Agathokleous M, Chaveeva P, Poon LCY et al (2013) Meta-analysis of second-trimester markers for trisomy 21. Ultrasound Obstet Gynecol 41:247–261

    CAS  Google Scholar 

  34. American College of Obstetricians and Gynecologists Committee on Genetics (2013) Committee Opinion No. 581: the use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol 122:1374–1377

    Google Scholar 

  35. Society for Maternal-Fetal Medicine (SMFM), Dugoff L, Norton ME, Kuller JA (2016) The use of chromosomal microarray for prenatal diagnosis. Am J Obstet Gynecol 215:B2–B9

    Google Scholar 

  36. Duncan A, Langlois S, Douglas Wilson R et al (2011) Use of array genomic hybridization technology in prenatal diagnosis in Canada. J Obstet Gynaecol Can 33:1256–1259

    Google Scholar 

  37. Hillman S, McMullan DJ, Maher ER, Kilby MD (2013) The use of chromosomal microarray in prenatal diagnosis. Obstet Gynaecol 15:80–84

    Google Scholar 

  38. Hu P, Wang Y, Sun R, et al (2017) Copy number variations with isolated fetal ventriculomegaly. Curr Mol Med 17

  39. Shaffer LG, Rosenfeld JA, Dabell MP et al (2012) Detection rates of clinically significant genomic alterations by microarray analysis for specific anomalies detected by ultrasound. Prenat Diagn 32:986–995

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Donnelly JC, Platt LD, Rebarber A et al (2014) Association of copy number variants with specific ultrasonographically detected fetal anomalies. Obstet Gynecol 124:83–90

    PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Huang L, Huang X et al (2018) Chromosomal aberrations and CNVs in twin fetuses with cardiovascular anomalies: comparison between monochorionic diamniotic and dichorionic diamniotic twins. Prenat Diagn 38:318–327

    CAS  Google Scholar 

  42. Martin CL, Kirkpatrick BE, Ledbetter DH (2015) Copy number variants, aneuploidies, and human disease. Clin Perinatol 42(227–42):vii

    Google Scholar 

  43. Fox NS, Monteagudo A, Kuller JA et al (2018) Mild fetal ventriculomegaly: diagnosis, evaluation, and management. Am J Obstet Gynecol 219:B2–B9

    Google Scholar 

  44. Shaheen R, Sebai MA, Patel N et al (2017) The genetic landscape of familial congenital hydrocephalus. Ann Neurol 81:890–897

    CAS  Google Scholar 

  45. Bickers DS, Adams RD (1949) Hereditary stenosis of the aqueduct of SYLVIUS as a cause of congenital hydrocephalus. Brain 72:246–262

    CAS  Google Scholar 

  46. Sun Y, Li Y, Chen M, et al (2019) A novel silent mutation in the L1CAM gene causing fetal hydrocephalus detected by whole-exome sequencing. Front Genet 10

  47. Tully HM, Dobyns WB (2014) Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur J Med Genet 57:359–368

    PubMed  PubMed Central  Google Scholar 

  48. Chow CW, Halliday JL, McD Anderson R et al (1985) Congenital absence of pyramids and its significance in genetic diseases. Acta Neuropathol 65:313–317

    CAS  Google Scholar 

  49. Vos YJ, de Walle HEK, Bos KK et al (2010) Genotype-phenotype correlations in L1 syndrome: a guide for genetic counselling and mutation analysis. J Med Genet 47:169–175

    CAS  Google Scholar 

  50. Schrander-Stumpel C, Höweler C, Jones M et al (1995) Spectrum of X-linked hydrocephalus (HSAS), MASA syndrome, and complicated spastic paraplegia (SPG1): clinical review with six additional families. Am J Med Genet 57:107–116

    CAS  Google Scholar 

  51. Huo L, Teng Z, Wang H, Liu X (2019) A novel splice site mutation in AP 1S2 gene for X-linked mental retardation in a Chinese pedigree and literature review. Brain Behav 9:e01221

    PubMed  PubMed Central  Google Scholar 

  52. Ruggeri G, Timms AE, Cheng C et al (2018) Bi-allelic mutations of CCDC88C are a rare cause of severe congenital hydrocephalus. Am J Med Genet A 176:676–681

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kousi M, Katsanis N (2016) The genetic basis of hydrocephalus. Annu Rev Neurosci 39:409–435

    CAS  Google Scholar 

  54. Rauen KA (2013) The RASopathies. Annu Rev Genomics Hum Genet 14:355–369

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Roberts AE, Allanson JE, Tartaglia M, Gelb BD (2013) Noonan syndrome. Lancet 381:333–342

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ali MM, Chasen ST, Norton ME (2017) Testing for Noonan syndrome after increased nuchal translucency. Prenat Diagn 37:750–753

    CAS  Google Scholar 

  57. Bakker M, Pajkrt E, Mathijssen IB, Bilardo CM (2011) Targeted ultrasound examination and DNA testing for Noonan syndrome, in fetuses with increased nuchal translucency and normal karyotype. Prenat Diagn 31:833–840

    CAS  Google Scholar 

  58. Gaudineau A, Doray B, Schaefer E et al (2013) Postnatal phenotype according to prenatal ultrasound features of Noonan syndrome: a retrospective study of 28 cases. Prenat Diagn 33:238–241

    CAS  Google Scholar 

  59. de Mooij YM, de Mooij YM, van den Akker NMS et al (2011) Aberrant lymphatic development in euploid fetuses with increased nuchal translucency including Noonan syndrome. Prenat Diagn 31:159–166

    Google Scholar 

  60. Baldassarre G, Mussa A, Dotta A et al (2011) Prenatal features of Noonan syndrome: prevalence and prognostic value. Prenat Diagn 31:949–954

    CAS  Google Scholar 

  61. Houweling AC, de Mooij YM, van der Burgt I, et al (2010) Prenatal detection of Noonan syndrome by mutation analysis of the PTPN11 and the KRASgenes. Prenat Diagn

  62. Allanson JE (2007) Noonan syndrome. Am J Med Genet C: Semin Med Genet 145C:274–279

    Google Scholar 

  63. Godfrey C, Clement E, Mein R et al (2007) Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130:2725–2735

    Google Scholar 

  64. Dobyns WB, Pagon RA, Armstrong D et al (1989) Diagnostic criteria for Walker-Warburg syndrome. Am J Med Genet 32:195–210

    CAS  Google Scholar 

  65. Falsaperla R, Praticò AD, Ruggieri M, et al (2016) Congenital muscular dystrophy: from muscle to brain. Ital J Pediatr 42

  66. Low ASC, Lee SL, Tan ASA et al (2005) Difficulties with prenatal diagnosis of the walker-Warburg syndrome. Acta Radiol 46:645–651

    CAS  Google Scholar 

  67. Lacalm A, Nadaud B, Massoud M et al (2016) Prenatal diagnosis of cobblestone lissencephaly associated with Walker-Warburg syndrome based on a specific sonographic pattern. Ultrasound Obstet Gynecol 47:117–122

    CAS  Google Scholar 

  68. Schwartz RS (2011) Ciliopathies. N Engl J Med 364:1533–1543

    Google Scholar 

  69. Waters AM, Beales PL (2011) Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 26:1039–1056

    PubMed  PubMed Central  Google Scholar 

  70. Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148

    CAS  Google Scholar 

  71. Putoux A, Thomas S, Coene KLM et al (2011) KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet 43:601–606

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sotak BN, Gleeson JG (2012) Can’t get there from here: cilia and hydrocephalus. Nat Med 18:1742–1743

    CAS  Google Scholar 

  73. Barisic I, Boban L, Loane M et al (2015) Meckel–Gruber syndrome: a population-based study on prevalence, prenatal diagnosis, clinical features, and survival in Europe. Eur J Hum Genet 23:746–752

    CAS  Google Scholar 

  74. Hartill V, Szymanska K, Sharif SM, et al (2017) Meckel–Gruber syndrome: an update on diagnosis, clinical management, and research advances. Front Pediatr 5

  75. Khurana S, Saini V, Wadhwa V, Kaur H (2017) Meckel–Gruber syndrome: ultrasonographic and fetal autopsy correlation. J Ultrasound 20:167–170

    PubMed  PubMed Central  Google Scholar 

  76. Knopp C, Rudnik-Schöneborn S, Eggermann T et al (2015) Syndromic ciliopathies: from single gene to multi gene analysis by SNP arrays and next generation sequencing. Mol Cell Probes 29:299–307

    CAS  Google Scholar 

  77. Chen C-P (2007) Meckel syndrome: genetics, perinatal findings, and differential diagnosis. Taiwan J Obstet Gynecol 46:9–14

    Google Scholar 

  78. Saraiva JM, Baraitser M (1992) Joubert syndrome: a review. Am J Med Genet 43:726–731

    CAS  Google Scholar 

  79. Parisi MA (2009) Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C: Semin Med Genet 151C:326–340

    CAS  Google Scholar 

  80. Brancati F, Dallapiccola B, Valente EM (2010) Joubert syndrome and related disorders. Orphanet J Rare Dis 5:20

    PubMed  PubMed Central  Google Scholar 

  81. Zhu L, Xie L (2017) Prenatal diagnosis of Joubert syndrome: a case report and literature review. Medicine 96:e8626

    PubMed  PubMed Central  Google Scholar 

  82. Shen O, Ben-Sira L, Rosenak D, Michaelson-Cohen R (2014) Early second-trimester molar tooth sign. Fetal Diagn Ther 36:259–262

    Google Scholar 

  83. Haratz KK, Shulevitz SL, Leibovitz Z et al (2019) Fourth ventricle index: sonographic marker for severe fetal vermian dysgenesis/agenesis. Ultrasound Obstet Gynecol 53:390–395

    CAS  Google Scholar 

  84. Quarello E, Molho M, Garel C et al (2014) Prenatal abnormal features of the fourth ventricle in Joubert syndrome and related disorders. Ultrasound Obstet Gynecol 43:227–232

    CAS  Google Scholar 

  85. Bachmann-Gagescu R, Dempsey JC, Phelps IG et al (2015) Joubert syndrome: a model for untangling recessive disorders with extreme genetic heterogeneity. J Med Genet 52:514–522

    CAS  Google Scholar 

  86. Dempsey JC, Phelps IG, Bachmann-Gagescu R et al (2017) Mortality in Joubert syndrome. Am J Med Genet A 173:1237–1242

    Google Scholar 

  87. Salonen R, Herva R (1990) Hydrolethalus syndrome. J Med Genet 27:756–759

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wei Q, Zhang Y, Schouteden C et al (2016) The hydrolethalus syndrome protein HYLS-1 regulates formation of the ciliary gate. Nat Commun 7:12437

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ferrante MI, Feather SA, Bulfone A et al (2001) Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet 68:569–576

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Feather SA, Winyard PJ, Dodd S, Woolf AS (1997) Oral-facial-digital syndrome type 1 is another dominant polycystic kidney disease: clinical, radiological and histopathological features of a new kindred. Nephrol Dial Transplant 12:1354–1361

    CAS  Google Scholar 

  91. Bruel A-L, Franco B, Duffourd Y et al (2017) Fifteen years of research on oral–facial–digital syndromes: from 1 to 16 causal genes. J Med Genet 54:371–380

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bouman A, Alders M, Oostra RJ et al (2017) Oral-facial-digital syndrome type 1 in males: congenital heart defects are included in its phenotypic spectrum. Am J Med Genet A 173:1383–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Alby C, Boutaud L, Bonnière M et al (2018) In utero ultrasound diagnosis of corpus callosum agenesis leading to the identification of orofaciodigital type 1 syndrome in female fetuses. Birth Defects Res 110:382–389

    CAS  Google Scholar 

  94. Drury S, Williams H, Trump N et al (2015) Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn 35:1010–1017

    CAS  Google Scholar 

  95. Thauvin-Robinet C, Rousseau T, Durand C et al (2001) Familial orofaciodigital syndrome type I revealed by ultrasound prenatal diagnosis of porencephaly. Prenat Diagn 21:466–470

    CAS  Google Scholar 

  96. Hogan GR, Bauman ML (1971) Hydrocephalus in Apert’s syndrome. J Pediatr 79:782–787

    CAS  Google Scholar 

  97. Murovic JA, Posnick JC, Drake JM et al (1993) Hydrocephalus in Apert syndrome: a retrospective review. Pediatr Neurosurg 19:151–155

    CAS  Google Scholar 

  98. Fukumitsu H, Ohmiya M, Nitta A et al (2000) Aberrant expression of neurotrophic factors in the ventricular progenitor cells of infant congenitally hydrocephalic rats. Childs Nerv Syst 16:516–521

    CAS  Google Scholar 

  99. Tan AP, Mankad K (2018) Apert syndrome: magnetic resonance imaging (MRI) of associated intracranial anomalies. Childs Nerv Syst 34:205–216

    Google Scholar 

  100. Collmann H, Sörensen N, Krauss J (2005) Hydrocephalus in craniosynostosis: a review. Childs Nerv Syst 21:902–912

    CAS  Google Scholar 

  101. Hassed S, Shewmake K, Teo C et al (1997) Shprintzen-Goldberg syndrome with osteopenia and progressive hydrocephalus. Am J Med Genet 70:450–453

    CAS  Google Scholar 

  102. Pierre-Kahn A, Hirsch JF, Renter D et al (1980) Hydrocephalus and achondroplasia. Pediatr Neurosurg 7:205–219

    CAS  Google Scholar 

  103. Swift D, Nagy L, Robertson B (2012) Endoscopic third ventriculostomy in hydrocephalus associated with achondroplasia. J Neurosurg Pediatr 9:73–81

    Google Scholar 

  104. Steinbok P, Hall J, Flodmark O (1991) Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. Ann Rev Hydrocephalus:104–104

  105. McKechnie L, Vasudevan C, Levene M (2012) Neonatal outcome of congenital ventriculomegaly. Semin Fetal Neonatal Med 17:301–307

    Google Scholar 

  106. Laskin MD, Kingdom J, Toi A et al (2005) Perinatal and neurodevelopmental outcome with isolated fetal ventriculomegaly: a systematic review. J Matern Fetal Neonatal Med 18:289–298

    Google Scholar 

  107. Wyldes M (2004) Isolated mild fetal ventriculomegaly. Arch Dis Child Fetal Neonatal Ed 89:9F–13F

  108. Pisapia JM, Sinha S, Zarnow DM et al (2017) Fetal ventriculomegaly: diagnosis, treatment, and future directions. Childs Nerv Syst 33:1113–1123

    Google Scholar 

  109. Breeze ACG, Alexander PMA, Murdoch EM et al (2007) Obstetric and neonatal outcomes in severe fetal ventriculomegaly. Prenat Diagn 27:124–129

    Google Scholar 

  110. Carta S, Kaelin Agten A, Belcaro C, Bhide A (2018) Outcome of fetuses with prenatal diagnosis of isolated severe bilateral ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol 52:165–173

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Etchegaray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etchegaray, A., Juarez-Peñalva, S., Petracchi, F. et al. Prenatal genetic considerations in congenital ventriculomegaly and hydrocephalus. Childs Nerv Syst 36, 1645–1660 (2020). https://doi.org/10.1007/s00381-020-04526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-020-04526-5

Keywords

Navigation