Not all ventriculomegaly is created equal: diagnostic overview of fetal, neonatal and pediatric ventriculomegaly


Fetal ventriculomegaly refers to a condition in which there is enlargement of the ventricular spaces, typically on prenatal ultrasound. It can be associated with other CNS or extra-CNS abnormalities, and this relationship is crucial to understand as it affects overall neonatal outcome. Isolated ventriculomegaly has been described in the literature with variable clinical outcome. Typically, outcome is based on the etiology and degree of ventriculomegaly. When associated with a pathologic condition, ventriculomegaly can be a result of hydrocephalus. While initial diagnosis is usually made on prenatal ultrasound, fetal magnetic resonance imaging is preferred to further elucidate any associated CNS malformations. In this paper, the authors aim to provide a comprehensive review of the diagnosis, associated etiologies, prognosis, and treatment options related to fetal, neonatal, and pediatric ventriculomegaly and hydrocephalus. In addition, preliminary data is provided from our institutional cohort of patients with a prenatal diagnosis of ventriculomegaly followed through the perinatal period.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3



Central nervous system


Intracranial pressure


Gestational age


Magnetic resonance imaging


Computed tomography


Fetal magnetic resonance imaging


Cerebrospinal fluid


Congenital aqueductal stenosis


Endoscopic third ventriculostomy


Post-hemorrhagic hydrocephalus


Ventricular access device


Ventriculosubgaleal shunt


Lumbar puncture


Agenesis of the corpus callosum


Corpus callosum


Chiari I malformation






Vein of Galen malformation




Choroid plexus cauterization


Diffusion tensor imaging


  1. 1.

    Salomon LJ, Ouahba J, Delezoide AL, Vuillard E, Oury JF, Sebag G, Garel C (2006) Third-trimester fetal MRI in isolated 10- to 12-mm ventriculomegaly: is it worth it? BJOG 113:942–947

    CAS  Google Scholar 

  2. 2.

    Cardoza JD, Goldstein RB, Filly RA (1988) Exclusion of fetal ventriculomegaly with a single measurement: the width of the lateral ventricular atrium. Radiology 169:711–714

    CAS  Google Scholar 

  3. 3.

    Benacerraf BR, Birnholz JC (1987) The diagnosis of fetal hydrocephalus prior to 22 weeks. J Clin Ultrasound 15:531–536

    CAS  Google Scholar 

  4. 4.

    Vergani P, Locatelli A, Strobelt N, Cavallone M, Ceruti P, Paterlini G, Ghidini A (1998) Clinical outcome of mild fetal ventriculomegaly. Am J Obstet Gynecol 178:218–222

    CAS  Google Scholar 

  5. 5.

    Griffiths PD, Reeves MJ, Morris JE, Mason G, Russell SA, Paley MN, Whitby EH (2010) A prospective study of fetuses with isolated ventriculomegaly investigated by antenatal sonography and in utero MR imaging. AJNR Am J Neuroradiol 31:106–111

    CAS  Google Scholar 

  6. 6.

    Farrell TA, Hertzberg BS, Kliewer MA, Harris L, Paine SS (1994) Fetal lateral ventricles: reassessment of normal values for atrial diameter at US. Radiology 193:409–411

    CAS  Google Scholar 

  7. 7.

    Melchiorre K, Bhide A, Gika AD, Pilu G, Papageorghiou AT (2009) Counseling in isolated mild fetal ventriculomegaly. Ultrasound Obstet Gynecol 34:212–224

    CAS  Google Scholar 

  8. 8.

    Pisapia JM, Sinha S, Zarnow DM, Johnson MP, Heuer GG (2017) Fetal ventriculomegaly: diagnosis, treatment, and future directions. Childs Nerv Syst 33:1113–1123

    Google Scholar 

  9. 9.

    McKechnie L, Vasudevan C, Levene M (2012) Neonatal outcome of congenital ventriculomegaly. Semin Fetal Neonatal Med 17:301–307

    Google Scholar 

  10. 10.

    Committee ISoUiOGE (2007) Sonographic examination of the fetal central nervous system: guidelines for performing the 'basic examination' and the 'fetal neurosonogram'. Ultrasound Obstet Gynecol 29:109–116

    Google Scholar 

  11. 11.

    Gynecologists ACoOa (2009) ACOG Practice Bulletin No. 101: ultrasonography in pregnancy. Obstet Gynecol 113:451–461

    Google Scholar 

  12. 12.

    Kline-Fath BM, Bulas DI, Bahado-Singh R (2015) Fundamental and advanced fetal imaging : ultrasound and MRI. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  13. 13.

    Lutz H, Buscarini E, World Health Organization (2011) Manual of diagnostic ultrasound. World Health Organization, Geneva

    Google Scholar 

  14. 14.

    Kline-Fath BM (2019) Ultrasound and MR imaging of the normal fetal brain. Neuroimaging Clin N Am 29:339–356

    Google Scholar 

  15. 15.

    Glenn OA, Barkovich AJ (2006) Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. AJNR Am J Neuroradiol 27:1604–1611

    CAS  Google Scholar 

  16. 16.

    Griffiths PD, Bradburn M, Campbell MJ, Cooper CL, Graham R, Jarvis D, Kilby MD, Mason G, Mooney C, Robson SC, Wailoo A, group Mc (2017) Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet 389:538–546

    Google Scholar 

  17. 17.

    Griffiths PD, Brackley K, Bradburn M, Connolly DJA, Gawne-Cain ML, Griffiths DI, Kilby MD, Mandefield L, Mooney C, Robson SC, Vollmer B, Mason G (2017) Anatomical subgroup analysis of the MERIDIAN cohort: ventriculomegaly. Ultrasound Obstet Gynecol 50:736–744

    CAS  Google Scholar 

  18. 18.

    Twickler DM, Reichel T, McIntire DD, Magee KP, Ramus RM (2002) Fetal central nervous system ventricle and cisterna magna measurements by magnetic resonance imaging. Am J Obstet Gynecol 187:927–931

    Google Scholar 

  19. 19.

    Garel C, Alberti C (2006) Coronal measurement of the fetal lateral ventricles: comparison between ultrasonography and magnetic resonance imaging. Ultrasound Obstet Gynecol 27:23–27

    CAS  Google Scholar 

  20. 20.

    Soni JP, Singhania RU, Sharma A (1992) Measurement of ventricular size in term and preterm infants. Indian Pediatr 29:55–59

    CAS  Google Scholar 

  21. 21.

    Saliba E, Bertrand P, Gold F, Vaillant MC, Laugier J (1990) Area of lateral ventricles measured on cranial ultrasonography in preterm infants: reference range. Arch Dis Child 65:1029–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Fiske CE, Filly RA, Callen PW (1981) Sonographic measurement of lateral ventricular width in early ventricular dilation. J Clin Ultrasound 9:303–307

    CAS  Google Scholar 

  23. 23.

    Davies MW, Swaminathan M, Chuang SL, Betheras FR (2000) Reference ranges for the linear dimensions of the intracranial ventricles in preterm neonates. Arch Dis Child Fetal Neonatal Ed 82:F218–F223

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Graziani L, Dave R, Desai H, Branca P, Waldroup L, Goldberg B (1980) Ultrasound studies in preterm infants with hydrocephalus. J Pediatr 97:624–630

    CAS  Google Scholar 

  25. 25.

    O'Hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M (1998) Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr Neurosurg 29:245–249

    CAS  Google Scholar 

  26. 26.

    Kulkarni AV, Drake JM, Armstrong DC, Dirks PB (1999) Measurement of ventricular size: reliability of the frontal and occipital horn ratio compared to subjective assessment. Pediatr Neurosurg 31:65–70

    CAS  Google Scholar 

  27. 27.

    McArdle CB, Richardson CJ, Nicholas DA, Mirfakhraee M, Hayden CK, Amparo EG (1987) Developmental features of the neonatal brain: MR imaging. Part II. Ventricular size and extracerebral space. Radiology 162:230–234

    CAS  Google Scholar 

  28. 28.

    Senapati GM, Levine D, Smith C, Estroff JA, Barnewolt CE, Robertson RL, Poussaint TY, Mehta TS, Werdich XQ, Pier D, Feldman HA, Robson CD (2010) Frequency and cause of disagreements in imaging diagnosis in children with ventriculomegaly diagnosed prenatally. Ultrasound Obstet Gynecol 36:582–595

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Pisapia JM, Rozycki M, Akbari H, Bakas S, Thawani JP, Moldenhauer JS, Storm PB, Zarnow DM, Davatzikos C, Heuer GG (2017) Correlations of atrial diameter and frontooccipital horn ratio with ventricle size in fetal ventriculomegaly. J Neurosurg Pediatr 19:300–306

    Google Scholar 

  30. 30.

    Patel SK, Yuan W, Mangano FT (2017) Advanced neuroimaging techniques in pediatric hydrocephalus. Pediatr Neurosurg 52:436–445

    Google Scholar 

  31. 31.

    Mangano FT, Stevenson CB, Nagaraj U, Conley A, Yuan W (2019) Abnormal anisotropic diffusion properties in pediatric myelomeningocele patients treated with fetal surgery: an initial DTI study. Childs Nerv Syst

  32. 32.

    Mangano FT, Altaye M, McKinstry RC, Shimony JS, Powell SK, Phillips JM, Barnard H, Limbrick DD, Holland SK, Jones BV, Dodd J, Simpson S, Mercer D, Rajagopal A, Bidwell S, Yuan W (2016) Diffusion tensor imaging study of pediatric patients with congenital hydrocephalus: 1-year postsurgical outcomes. J Neurosurg Pediatr 1–14

  33. 33.

    Pilu G, Falco P, Gabrielli S, Perolo A, Sandri F, Bovicelli L (1999) The clinical significance of fetal isolated cerebral borderline ventriculomegaly: report of 31 cases and review of the literature. Ultrasound Obstet Gynecol 14:320–326

    CAS  Google Scholar 

  34. 34.

    Pagani G, Thilaganathan B, Prefumo F (2014) Neurodevelopmental outcome in isolated mild fetal ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol 44:254–260

    CAS  Google Scholar 

  35. 35.

    Kumar M, Garg N, Hasija A, Pritam A, Shukla P, Vanamail P, Roy Choudhury S (2018) Two-year postnatal outcome of 263 cases of fetal ventriculomegaly. J Matern Fetal Neonatal Med 1–7

  36. 36.

    Carta S, Kaelin Agten A, Belcaro C, Bhide A (2018) Outcome of fetuses with prenatal diagnosis of isolated severe bilateral ventriculomegaly: systematic review and meta-analysis. Ultrasound Obstet Gynecol 52:165–173

    CAS  Google Scholar 

  37. 37.

    Verhagen JM, Schrander-Stumpel CT, Krapels IP, de Die-Smulders CE, van Lint FH, Willekes C, Weber JW, Gavilanes AW, Macville MV, Stegmann AP, Engelen JJ, Bakker J, Vos YJ, Frints SG (2011) Congenital hydrocephalus in clinical practice: a genetic diagnostic approach. Eur J Med Genet 54:e542–e547

    CAS  Google Scholar 

  38. 38.

    Gorlin RJ, Cohen MM, Hennekam RCM (2001) Syndromes of the head and neck. Oxford University Press, New York

    Google Scholar 

  39. 39.

    Schrander-Stumpel C, Fryns JP (1998) Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur J Pediatr 157:355–362

    CAS  Google Scholar 

  40. 40.

    Hutson SL, Wheeler KM, McLone D, Frim D, Penn R, Swisher CN, Heydemann PT, Boyer KM, Noble AG, Rabiah P, Withers S, Montoya JG, Wroblewski K, Karrison T, Grigg ME, McLeod R (2015) Patterns of hydrocephalus caused by congenital toxoplasma gondii infection associate with parasite genetics. Clin Infect Dis 61:1831–1834

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kulkarni AV, Shams I (2007) Quality of life in children with hydrocephalus: results from the Hospital for Sick Children, Toronto. J Neurosurg 107:358–364

    Google Scholar 

  42. 42.

    Levitsky DB, Mack LA, Nyberg DA, Shurtleff DB, Shields LA, Nghiem HV, Cyr DR (1995) Fetal aqueductal stenosis diagnosed sonographically: how grave is the prognosis? AJR Am J Roentgenol 164:725–730

    CAS  Google Scholar 

  43. 43.

    Shaheen R, Sebai MA, Patel N, Ewida N, Kurdi W, Altweijri I, Sogaty S, Almardawi E, Seidahmed MZ, Alnemri A, Madirevula S, Ibrahim N, Abdulwahab F, Hashem M, Al-Sheddi T, Alomar R, Alobeid E, Sallout B, AlBaqawi B, AlAali W, Ajaji N, Lesmana H, Hopkin RJ, Dupuis L, Mendoza-Londono R, Al Rukban H, Yoon G, Faqeih E, Alkuraya FS (2017) The genetic landscape of familial congenital hydrocephalus. Ann Neurol 81:890–897

    CAS  Google Scholar 

  44. 44.

    Heaphy-Henault KJ, Guimaraes CV, Mehollin-Ray AR, Cassady CI, Zhang W, Desai NK, Paldino MJ (2018) Congenital aqueductal stenosis: findings at fetal MRI that accurately predict a postnatal diagnosis. AJNR Am J Neuroradiol 39:942–948

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Barkovich AJ, Newton TH (1989) MR of aqueductal stenosis: evidence of a broad spectrum of tectal distortion. AJNR Am J Neuroradiol 10:471–476

    CAS  Google Scholar 

  46. 46.

    Tonetti DA, Richter B, Andrews E, Xu C, Emery SP, Greene S (2018) Clinical outcomes of isolated congenital aqueductal stenosis. World Neurosurg 114:e976–e981

    Google Scholar 

  47. 47.

    Mazzola CA, Choudhri AF, Auguste KI, Limbrick DD, Rogido M, Mitchell L, Flannery AM, Force PHSRaE-BGT (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: Management of posthemorrhagic hydrocephalus in premature infants. J Neurosurg Pediatr 14(Suppl 1):8–23

    Google Scholar 

  48. 48.

    Wellons JC, Shannon CN, Holubkov R, Riva-Cambrin J, Kulkarni AV, Limbrick DD, Whitehead W, Browd S, Rozzelle C, Simon TD, Tamber MS, Oakes WJ, Drake J, Luerssen TG, Kestle J, Network HCR (2017) Shunting outcomes in posthemorrhagic hydrocephalus: results of a Hydrocephalus Clinical Research Network prospective cohort study. J Neurosurg Pediatr 20:19–29

    Google Scholar 

  49. 49.

    Dorner RA, Burton VJ, Allen MC, Robinson S, Soares BP (2018) Preterm neuroimaging and neurodevelopmental outcome: a focus on intraventricular hemorrhage, post-hemorrhagic hydrocephalus, and associated brain injury. J Perinatol 38:1431–1443

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Tamburrini G, Frassanito P, Iakovaki K, Pignotti F, Rendeli C, Murolo D, Di Rocco C (2013) Myelomeningocele: the management of the associated hydrocephalus. Childs Nerv Syst 29:1569–1579

    CAS  Google Scholar 

  51. 51.

    Elgamal EA (2012) Natural history of hydrocephalus in children with spinal open neural tube defect. Surg Neurol Int 3:112

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Rintoul NE, Sutton LN, Hubbard AM, Cohen B, Melchionni J, Pasquariello PS, Adzick NS (2002) A new look at myelomeningoceles: functional level, vertebral level, shunting, and the implications for fetal intervention. Pediatrics 109:409–413

    Google Scholar 

  53. 53.

    Adzick NS, Thom EA, Spong CY, Brock JW, Burrows PK, Johnson MP, Howell LJ, Farrell JA, Dabrowiak ME, Sutton LN, Gupta N, Tulipan NB, D'Alton ME, Farmer DL, Investigators M (2011) A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med 364:993–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Tuli S, Drake J, Lamberti-Pasculli M (2003) Long-term outcome of hydrocephalus management in myelomeningoceles. Childs Nerv Syst 19:286–291

    Google Scholar 

  55. 55.

    Piatt JH (2010) Treatment of myelomeningocele: a review of outcomes and continuing neurosurgical considerations among adults. J Neurosurg Pediatr 6:515–525

    Google Scholar 

  56. 56.

    Radmanesh F, Nejat F, El Khashab M, Ghodsi SM, Ardebili HE (2009) Shunt complications in children with myelomeningocele: effect of timing of shunt placement. Clinical article. J Neurosurg Pediatr 3:516–520

    Google Scholar 

  57. 57.

    Warf BC, Campbell JW (2008) Combined endoscopic third ventriculostomy and choroid plexus cauterization as primary treatment of hydrocephalus for infants with myelomeningocele: long-term results of a prospective intent-to-treat study in 115 East African infants. J Neurosurg Pediatr 2:310–316

    Google Scholar 

  58. 58.

    Collmann H, Sörensen N, Krauss J (2005) Hydrocephalus in craniosynostosis: a review. Childs Nerv Syst 21:902–912

    CAS  Google Scholar 

  59. 59.

    Golabi M, Edwards MS, Ousterhout DK (1987) Craniosynostosis and hydrocephalus. Neurosurgery 21:63–67

    CAS  Google Scholar 

  60. 60.

    Cinalli G, Sainte-Rose C, Kollar EM, Zerah M, Brunelle F, Chumas P, Arnaud E, Marchac D, Pierre-Kahn A, Renier D (1998) Hydrocephalus and craniosynostosis. J Neurosurg 88:209–214

    CAS  Google Scholar 

  61. 61.

    Noetzel MJ, Marsh JL, Palkes H, Gado M (1985) Hydrocephalus and mental retardation in craniosynostosis. J Pediatr 107:885–892

    CAS  Google Scholar 

  62. 62.

    Cohen MM, MacLean RE (2000) Craniosynostosis : diagnosis, evaluation, and management. Oxford University Press, New York

    Google Scholar 

  63. 63.

    Hanieh A, David DJ (1993) Apert's syndrome. Childs Nerv Syst 9:289–291

    CAS  Google Scholar 

  64. 64.

    Renier D, Arnaud E, Cinalli G, Sebag G, Zerah M, Marchac D (1996) Prognosis for mental function in Apert's syndrome. J Neurosurg 85:66–72

    CAS  Google Scholar 

  65. 65.

    Glass HC, Shaw GM, Ma C, Sherr EH (2008) Agenesis of the corpus callosum in California 1983-2003: a population-based study. Am J Med Genet A 146A:2495–2500

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Jeret JS, Serur D, Wisniewski K, Fisch C (1985) Frequency of agenesis of the corpus callosum in the developmentally disabled population as determined by computerized tomography. Pediatr Neurosci 12:101–103

    Google Scholar 

  67. 67.

    D'Antonio F, Pagani G, Familiari A, Khalil A, Sagies TL, Malinger G, Leibovitz Z, Garel C, Moutard ML, Pilu G, Bhide A, Acharya G, Leombroni M, Manzoli L, Papageorghiou A, Prefumo F (2016) Outcomes associated with isolated agenesis of the corpus callosum: a meta-analysis. Pediatrics 138

  68. 68.

    Imataka G, Nakagawa E, Kuwashima S, Watanabe H, Yamanouchi H, Arisaka O (2006) Callosal agenesis followed postnatally after prenatal diagnosis. Congenit Anom (Kyoto) 46:160–162

    Google Scholar 

  69. 69.

    Elster AD, Chen MY (1992) Chiari I malformations: clinical and radiologic reappraisal. Radiology 183:347–353

    CAS  Google Scholar 

  70. 70.

    Park JK, Gleason PL, Madsen JR, Goumnerova LC, Scott RM (1997) Presentation and management of Chiari I malformation in children. Pediatr Neurosurg 26:190–196

    CAS  Google Scholar 

  71. 71.

    Di Rocco C, Frassanito P, Massimi L, Peraio S (2011) Hydrocephalus and Chiari type I malformation. Childs Nerv Syst 27:1653–1664

    Google Scholar 

  72. 72.

    Steinbok P, Hall J, Flodmark O (1989) Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg 71:42–48

    CAS  Google Scholar 

  73. 73.

    Bosemani T, Orman G, Hergan B, Carson KA, Huisman TA, Poretti A (2015) Achondroplasia in children: correlation of ventriculomegaly, size of foramen magnum and jugular foramina, and emissary vein enlargement. Childs Nerv Syst 31:129–133

    Google Scholar 

  74. 74.

    King JA, Vachhrajani S, Drake JM, Rutka JT (2009) Neurosurgical implications of achondroplasia. J Neurosurg Pediatr 4:297–306

    Google Scholar 

  75. 75.

    Priestley BL, Lorber J (1981) Ventricular size and intelligence in achondroplasia. Z Kinderchir 34:320–326

    CAS  Google Scholar 

  76. 76.

    Rekate HL (2019) Pathogenesis of hydrocephalus in achondroplastic dwarfs: a review and presentation of a case followed for 22 years. Childs Nerv Syst 35:1295–1301

    Google Scholar 

  77. 77.

    Swift D, Nagy L, Robertson B (2012) Endoscopic third ventriculostomy in hydrocephalus associated with achondroplasia. J Neurosurg Pediatr 9:73–81

    Google Scholar 

  78. 78.

    Etus V, Ceylan S (2005) The role of endoscopic third ventriculostomy in the treatment of triventricular hydrocephalus seen in children with achondroplasia. J Neurosurg 103:260–265

    Google Scholar 

  79. 79.

    Dalla Corte A, de Souza CFM, Anés M, Giugliani R (2017) Hydrocephalus and mucopolysaccharidoses: what do we know and what do we not know? Childs Nerv Syst 33:1073–1080

    Google Scholar 

  80. 80.

    Croen LA, Shaw GM, Lammer EJ (1996) Holoprosencephaly: epidemiologic and clinical characteristics of a California population. Am J Med Genet 64:465–472

    CAS  Google Scholar 

  81. 81.

    Levey EB, Stashinko E, Clegg NJ, Delgado MR (2010) Management of children with holoprosencephaly. Am J Med Genet C: Semin Med Genet 154C:183–190

    Google Scholar 

  82. 82.

    Khalid M, Khalid S, Zaheer S, Redhu N, Ekramullah (2012) Hydranencephaly: a rare cause of an enlarging head size in an infant. N Am J Med Sci 4:520–522

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Merker B (2008) Life expectancy in hydranencephaly. Clin Neurol Neurosurg 110:213–214

    Google Scholar 

  84. 84.

    Pedrosa HAR, Lemos SP, Vieira C, Amaral LC, Malheiros JA, Oliveira MM, Gomez RS, Giannetti AV (2017) Choroid plexus cauterization on treatment of hydranencephaly and maximal hydrocephalus. Childs Nerv Syst 33:1509–1516

    Google Scholar 

  85. 85.

    Youmans JR (1996) Neurological surgery : a comprehensive reference guide to the diagnosis and management of neurosurgical problems. Saunders, Philadelphia

    Google Scholar 

  86. 86.

    Da Silva SL, Jeelani Y, Dang H, Krieger MD, McComb JG (2015) Risk factors for hydrocephalus and neurological deficit in children born with an encephalocele. J Neurosurg Pediatr 15:392–398

    Google Scholar 

  87. 87.

    Moorthy RK, Rajshekhar V (2002) Management of hydrocephalus associated with occipital encephalocoele using endoscopic third ventriculostomy: report of two cases. Surg Neurol 57:351–355 discussion 355

    Google Scholar 

  88. 88.

    Gopalan V, Rennie A, Robertson F, Kanagarajah L, Toolis C, Bhate S, Ganesan V (2018) Presentation, course, and outcome of postneonatal presentations of vein of Galen malformation: a large, single-institution case series. Dev Med Child Neurol 60:424–429

    Google Scholar 

  89. 89.

    Meila D, Grieb D, Melber K, Jacobs C, Maslehaty H, Petridis A, El Habony R, Lanfermann H, Scholz M, Brassel F (2016) Hydrocephalus in vein of Galen malformation: etiologies and therapeutic management implications. Acta Neurochir 158:1279–1284

    Google Scholar 

  90. 90.

    Kestle J, Drake J, Milner R, Sainte-Rose C, Cinalli G, Boop F, Piatt J, Haines S, Schiff S, Cochrane D, Steinbok P, MacNeil N (2000) Long-term follow-up data from the Shunt Design Trial. Pediatr Neurosurg 33:230–236

    CAS  Google Scholar 

  91. 91.

    Hoshide R, Meltzer H, Dalle-Ore C, Gonda D, Guillaume D, Chen CC (2017) Impact of ventricular-peritoneal shunt valve design on clinical outcome of pediatric patients with hydrocephalus: lessons learned from randomized controlled trials. Surg Neurol Int 8:49

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Kemp J, Flannery AM, Tamber MS, Duhaime AC, Force PHSRaE-BGT (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 9: effect of ventricular catheter entry point and position. J Neurosurg Pediatr 14(Suppl 1):72–76

    Google Scholar 

  93. 93.

    Whitehead WE, Riva-Cambrin J, Kulkarni AV, Wellons JC, Rozzelle CJ, Tamber MS, Limbrick DD, Browd SR, Naftel RP, Shannon CN, Simon TD, Holubkov R, Illner A, Cochrane DD, Drake JM, Luerssen TG, Oakes WJ, Kestle JR, Network ftHCR (2017) Ventricular catheter entry site and not catheter tip location predicts shunt survival: a secondary analysis of 3 large pediatric hydrocephalus studies. J Neurosurg Pediatr 19:157–167

    Google Scholar 

  94. 94.

    Flannery AM, Duhaime AC, Tamber MS, Kemp J, Force PHSRaE-BGT (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 3: endoscopic computer-assisted electromagnetic navigation and ultrasonography as technical adjuvants for shunt placement. J Neurosurg Pediatr 14(Suppl 1):24–29

    Google Scholar 

  95. 95.

    Phan S, Liao J, Jia F, Maharaj M, Reddy R, Mobbs RJ, Rao PJ, Phan K (2016) Laparotomy vs minimally invasive laparoscopic ventriculoperitoneal shunt placement for hydrocephalus: a systematic review and meta-analysis. Clin Neurol Neurosurg 140:26–32

    Google Scholar 

  96. 96.

    Glick PL, Harrison MR, Halks-Miller M, Adzick NS, Nakayama DK, Anderson JH, Nyland TG, Villa R, Edwards MS (1984) Correction of congenital hydrocephalus in utero II: efficacy of in utero shunting. J Pediatr Surg 19:870–881

    CAS  Google Scholar 

  97. 97.

    Duru S, Oria M, Arevalo S, Rodo C, Correa L, Vuletin F, Sanchez-Margallo F, Peiro JL (2019) Comparative study of intracisternal kaolin injection techniques to induce congenital hydrocephalus in fetal lamb. Childs Nerv Syst 35:843–849

    Google Scholar 

  98. 98.

    Yamasaki M, Kanemura Y (2015) Molecular biology of pediatric hydrocephalus and hydrocephalus-related diseases. Neurol Med Chir (Tokyo) 55:640–646

    Google Scholar 

  99. 99.

    Limbrick DD, Castaneyra-Ruiz L, Han RH, Berger D, McAllister JP, Morales DM (2017) Cerebrospinal Fluid Biomarkers of Pediatric Hydrocephalus. Pediatr Neurosurg 52:426–435

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Francesco T. Mangano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, S.K., Zamorano-Fernandez, J., Nagaraj, U. et al. Not all ventriculomegaly is created equal: diagnostic overview of fetal, neonatal and pediatric ventriculomegaly. Childs Nerv Syst 36, 1681–1696 (2020).

Download citation


  • Fetal ventriculomegaly
  • Hydrocephalus
  • Fetus
  • Fetal magnetic resonance imaging
  • Myelomeningocele