Child's Nervous System

, Volume 35, Issue 1, pp 129–137 | Cite as

Diffusion tensor imaging (DTI) and Tractography of the spinal cord in pediatric population with spinal lipomas: preliminary study

  • Pierre AntherieuEmail author
  • R. Levy
  • T. De Saint Denis
  • L. Lohkamp
  • G. Paternoster
  • F. Di Rocco
  • N. Boddaert
  • M. Zerah
Original Paper



Diffusion tensor imaging (DTI) allows studying the micro and macro architecture. One of the major challenges in dysraphism is to know the morphologic organization of the spinal cord. In a preliminary work, spinal lipoma was chosen for analyzing the micro-architecture parameters and fiber morphology of the spinal cord by DTI with tractography.


Twelve patients (0–8 years) related to spinal lipomas treated between May 2017 and March 2018 were included. Tractography reconstruction of the conus medullaris of 12 patients were obtained using the MedINRIA software. The diffusion parameters have been calculated by Osirix DTImap plugin.


We found a significant difference in the FA (p = 0.024) between two age groups (< 24 months old and > 24 months old). However, no significant differences in the mean values of FA, RD, and MD between the level of the lipoma and the level above were noted. The tractography obtained in each case was coherent with morphologic sequences and reproducible. The conus medullaris was deformed and shifted. Destruction or disorganization of fibers and any passing inside the lipomas was not observed.


Tractography of the conus medullaris in a very young pediatric population (0–8 years old) with a spinal lipoma is possible, reproductive, and allows visualization of the spinal cord within the dysraphism. Analysis of the FA shows that the presence of a lipoma seems to have an effect on the myelination of the conus medullaris. It is during the probable myelination phase that the majority of symptoms appear. Is the myelination per se the cause?


Diffusion tensor imaging Fiber tractography Spinal dysraphism Conus medullaris Spinal lipomas 


Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest to declare.


  1. 1.
    Mitchell JB, Pang D (2008) Surgical management of spinal dysraphism. Operative Technique in Pediatric Neurosurgery 2(60):707–734Google Scholar
  2. 2.
    Pierre-Kahn A, Zerah M, Renier D (1995) Lipomes malformatifs intrarachidiens. Neurochirurgie 41(Supp 1):1–134Google Scholar
  3. 3.
    Zerah M, Roujeau T, Catala M, Pierre-Kahn A (2008) Spinal Lipomas. In: Spina Bifida, Management and Outcome. pp 445–474Google Scholar
  4. 4.
    Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254CrossRefGoogle Scholar
  5. 5.
    Douek P, Turner R, Pekar J, Patronas N, Le Bihan D (1991) Mr color mapping of myelin fiber orientation. J Comput Assist Tomogr 15(6):923–929CrossRefGoogle Scholar
  6. 6.
    Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65(6):1532–1556CrossRefGoogle Scholar
  7. 7.
    Khalil C, Hancart C, Le Thuc V, Chantelot C, Chechin D, Cotton A (2008) Diffusion tensor imaging and tractographie of the median nerve in carpal tunnel syndrome: preliminary results. Eur Radiol 18(10):2283–2291CrossRefGoogle Scholar
  8. 8.
    Wieshmann UC, Clark CA, Symms MR, Franconi F, Barker GJ, Shorvon SD (1999) Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with diffusion tensor imaging. Magn Reson Imaging 17(9):1269–1274CrossRefGoogle Scholar
  9. 9.
    Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15(7–8):468–480CrossRefGoogle Scholar
  10. 10.
    Clark CA, Werring DJ (2002) Diffusion tensor imaging in spinal cord: methods and applications—a review. NMR Biomed 15(7–8):578–586CrossRefGoogle Scholar
  11. 11.
    Maier SE, Mamata H (2005) Diffusion tensor imaging of the spinal cord. Ann N Y Acad Sci 1064:50–60CrossRefGoogle Scholar
  12. 12.
    Filippi CG, Andrews T, Gonyea JV, Linnell G, Cauley KA (2010) Magnetic resonance diffusion tensor imaging and tractography of the lower spinal cord: application to diastematomyelia and tethered cord. Eur Radiol 20(9):2194–2199CrossRefGoogle Scholar
  13. 13.
    Tsuchiya K, Fujikawa A, Honya K, Nitatori T, Suzuki Y (2008) Diffusion tensor tractography of the lower spinal cord. Neuroradiology 50(3):221–225CrossRefGoogle Scholar
  14. 14.
    Sysoev KV, Tadevosyan AR, Nazinkina YV, Khachatryan VA (2016) (2016) Surgical treatment outcomes in children with tethered spinal cord syndrome. A prognosis on the basis of spinal 3T MRI tractography. Zh Vopr Neirokhir Im N N Burdenko 80(3):66–73CrossRefGoogle Scholar
  15. 15.
    Haakma W, Dik P, ten Haken B, Froeling M, Nievelstein RA, Cuppen I, de Jong TP, Leemans A (2014) Diffusion tensor magnetic resonance imaging and fiber tractographie of the sacral plexus in children with spina bifida. J Urol 192(3):927–933CrossRefGoogle Scholar
  16. 16.
    Saksena S, Middleton DM, Krisa L, Shah P, Faro SH, Sinko R, Gaughan J, Finsterbusch J, Mulcahey MJ, Mohamed FB (2016) Diffusion tensor imaging of the normal cervical and thoracic pediatric spinal cord. AJNR Am J Neuroradiol 14Google Scholar
  17. 17.
    Toussaint N, Souplet JC, and Fillard P (2007) MedINRIA: medical image navigation and research tool by INRIA. In proc. of MICCAI ’07 workshop on interaction in medical image analysis and visualization. Brisbane AustraliaGoogle Scholar
  18. 18.
    Fillard P, Pennec X, Arsigny V and Ayache N (2007) Clinical DT-MRI estimation, smoothing and fiber tracking with log-Euclidean metrics Asclepios Reseach Team, INRIA Sophia AntipolisGoogle Scholar
  19. 19.
    Middleton DM, Mohamed FB, Barakat N, Hunter LN, Shellikeri S, Finsterbusch J, Faro SH, Shah P, Samdani AF, Mulcahey MJ (2014) An investigation of motion correction algorithms for pediatric spinal cord DTI in healthy subjects and patients with spinal cord injury. Magn Reson Imaging 32(5):433–439CrossRefGoogle Scholar
  20. 20.
    Barakat N, Mohamed FB, Hunter LN, Shah P, Faro SH, Samdani AF, Finsterbusch J, Betz R, Gaughan J, Mulcahey MJ (2012) Diffusion tensor imaging of the normal pediatric spinal cord using an inner field of view echo-planar imaging sequence. AJNR Am J Neuroradiol 33(6):1127–1133CrossRefGoogle Scholar
  21. 21.
    Wang K, Song Q, Zhang F, Chen Z, Hou C, Tang Y, Chen S, Hao Q, Shen H (2014) Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord. Eur J Radiol 83:2196–2202CrossRefGoogle Scholar
  22. 22.
    Dubois J, Dehaene-Lambertz G, Perrin M, Mangin JF, Cointepas Y, Duchesnay E, le Bihan D, Hertz-Pannier L (2008) Asynchrony landmarks revealed noninvasively by diffusion tensor imaging. Hum Brain Mapp 29(1):14–27CrossRefGoogle Scholar
  23. 23.
    Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927CrossRefGoogle Scholar
  24. 24.
    Langworthy OR (1933) Development of behavior patterns and myelinization of the nervous system in the human fetus and infant. Contributions of Embryology of the Carnegie Institution 24:3–57Google Scholar
  25. 25.
    Kubis N, Catala M (2003) Development and maturation of the pyramidal tract. Neurochirurgie 49(2–3 Pt 2):145–153Google Scholar
  26. 26.
    Haynes WIA, Clair AH, Fernandez-Vidal S, Gholipour B, Morgiève M, Mallet L (2018) Altered anatomical connections of associative and limbic cortico-basal-ganglia circuits in obsessive-compulsive disorder. Eur Psychiatry 51:1–8CrossRefGoogle Scholar
  27. 27.
    Alizadeh M, Fisher J, Saksena S, Sultan Y, Conklin CJ, Middleton DM, Finsterbusch J, Krisa L, Flanders AE, Faro SH, Mulcahey MJ, Mohamed FB (2018) Reduced field of view diffusion tensor imaging and fiber tractography of the pediatric cervical and thoracic spinal cord injury. J Neurotrauma 35(3):452–460CrossRefGoogle Scholar
  28. 28.
    Singhi S, Tekes A, Thurnher M, Gilson WD, Izbudak I, Thompson CB, Huisman TAGM (2012) Diffusion tensor imaging of the maturing paediatric cervical spinal cord: from the neonate to the young adult. J Neuroradiol 39:142–148CrossRefGoogle Scholar
  29. 29.
    Kulkarni AV, Pierre-Kahn A, Zerah M (2004) Conservative management of asymptomatic spinal lipomas of the conus. Neurosurgery 54(4):868–875CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
corrected publication August/2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity Medical CenterSaint EtienneFrance
  2. 2.Department of Pediatric RadiologyNecker –Enfants Malades’s Medical CenterParisFrance
  3. 3.Department of Pediatric NeurosurgeryNecker –Enfants Malades’s Medical CenterParisFrance
  4. 4.Department of Pediatric NeurosurgeryUniversity Medical CenterLyonFrance

Personalised recommendations