Advertisement

Child's Nervous System

, Volume 34, Issue 5, pp 965–970 | Cite as

Virtual modeling, stereolithography, and intraoperative CT guidance for the optimization of sagittal synostosis reconstruction: a technical note

  • Andrew J. Kobets
  • Adam Ammar
  • Jonathan Nakhla
  • Aleka Scoco
  • Rani Nasser
  • James T. Goodrich
  • Rick Abbott
Technical Note

Abstract

Introduction

Sagittal synostosis affects 1 in 1000 live births and may result in increased intracranial pressure, hindrance of normal neural development, and cosmetic deformity due to scaphocephaly. Historically, several approaches have been utilized for surgical correction and recently, computed tomography (CT)-guided reconstruction procedures are increasingly used. In this report, the authors describe the use of a CT-derived virtual and stereolithographic (3D printed) craniofacial models, which are used to guide intraoperative bone placement, and intraoperative CT guidance for confirmation of bone placement, to ensure the accuracy of surgical correction of scaphocephaly, as demonstrated to parents.

Methods

Preoperative high-resolution CT imaging was used to construct 3D image sets of the skulls of two infants (a 14-month-old female and a 6-month-old male) with scaphocephaly. These 3D image sets were then used to create a virtual model of the proposed surgical correction for each of the infants’ deformities, which was then printed and made available for use intraoperatively to plan the bone flap, fashion the bone cuts, and optimize graft placement. After the remodeling, adherence to the preoperative plan was assessed by overlaying a CT scan of the remodeled skull with the virtual model. Deviations from the preoperative model were noted.

Results

Both patients had excellent postoperative cosmetic correction of head shape and contouring. The mean operative time was 5 h, blood loss was 100 ml, and one child required modification of the subocciput after intraoperative imaging showed a deviation of the reconstruction from the surgical goal as depicted by the preoperative model.

Conclusion

The addition of neuro-navigation to stereolithographic modeling ensured the accuracy of the reconstruction for our patients and provided greater confidence to both surgeons and parents. While unisutural cases are presented for clarity, correction was still required for one patient. The cost of the models and the additional CT required must be weighed against the complexity of the procedure and possibly reserved for patients with potentially complicated corrections.

Keywords

Scaphocephaly Stereolithography Craniosynostosis CT guidance Reconstruction Virtual model 

Notes

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Alvarez-Garijo JA, Cavadas PC, Vila MM, Alvarez-Llanas A (2001) Sagittal synostosis: results of surgical treatment in 210 patients. Childs Nerv Syst 17:64–68CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson PJ, Yong R, Surman TL, Rajion ZA, Ranjitkar S (2014) Application of three-dimensional computed tomography in craniofacial clinical practice and research. Aust Dent J 59(Suppl 1):174–185CrossRefPubMedGoogle Scholar
  3. 3.
    Bendon CL, Johnson HP, Judge AD, Wall SA, Johnson D (2014) The aesthetic outcome of surgical correction for sagittal synostosis can be reliably scored by a novel method of preoperative and postoperative visual assessment. Plast Reconstr Surg 134:775e–786eCrossRefPubMedGoogle Scholar
  4. 4.
    Bly RA, Chang S, Cudejkova M, Liu JJ, Moe KS (2013) Computer-guided orbital reconstruction to improve outcomes. JAMA Facial Plastic Surgery 15:113–120CrossRefPubMedGoogle Scholar
  5. 5.
    Darwood A, Collier J, Joshi N, Grant WE, Sauret-Jackson V, Richards R, Dawood A, Kirkpatrick N (2015) Re-thinking 3D printing: a novel approach to guided facial contouring. J Craniomaxillofac Surg 43(7):1256–1260CrossRefPubMedGoogle Scholar
  6. 6.
    Fearon JA, McLaughlin EB, Kolar JC (2006) Sagittal craniosynostosis: surgical outcomes and long-term growth. Plast Reconstr Surg 117:532–541CrossRefPubMedGoogle Scholar
  7. 7.
    Foley BD (2013) Mandibular reconstruction using computer-aided design and computer-aided manufacturing: an analysis of surgical results. J Oral Maxillofac Surg 71:e111–e119CrossRefPubMedGoogle Scholar
  8. 8.
    Goodrich J, Teppper O, Staffenberg D (2012) Craniosynostosis: posterior two-third cranial vault reconstruction using bioresorbable plates and a PDS suture lattice in sagittal and lambdoidal synostosis. Childs Nerv Syst 28:1399–1406CrossRefPubMedGoogle Scholar
  9. 9.
    Gray R, Gougoutas A, Nguyen V, Taylor J, Bastidas N (2017) Use of three-dimensional, CAD/CAM-assisted, virtual surgical simulation and planning in the pediatric craniofacial population. Int J Pediatr Otorhinolaryngol 97:163–169CrossRefPubMedGoogle Scholar
  10. 10.
    Hochfeld M, Lamecker H, Thomale UW, Schulz M, Zachow S, Haberl H (2014) Frame-based cranial reconstruction. J Neurosurg Pediatr 13(3):319–323CrossRefPubMedGoogle Scholar
  11. 11.
    Jane JA Jr, Lin KY, Jane JA Sr (2009) Sagittal synostosis. Neurosurg Focus 9:e3Google Scholar
  12. 12.
    Jane JA, Edgerton MT, Futrell JW, Park TS (2007) Immediate correction of sagittal synostosis. J Neurosurg 107:427–432PubMedGoogle Scholar
  13. 13.
    LoPresti M, Daniels B, Buchanan EP, Monson L, Lam S (2017) Virtual surgical planning and 3D printing in repeat calvarial vault reconstruction for craniosynostosis: technical note. J Neurosurg Pediatr 19(4):490–494CrossRefPubMedGoogle Scholar
  14. 14.
    Mardini S, Alsubaie S, Cayci C, Chim H, Wetjen N (2014) Three-dimensional preoperative virtual planning and template use for surgical correction of craniosynostosis. J Plast Reconstr Aesthet Surg 67:336–343CrossRefPubMedGoogle Scholar
  15. 15.
    Maugans TA, McComb JG, Levy ML (1997) Surgical management of sagittal synostosis: a comparative analysis of strip craniectomy and calvarial vault remodeling. Pediatr Neurosurg 27:137–148CrossRefPubMedGoogle Scholar
  16. 16.
    Panchal J, Marsh JL, Park TS, Kaufman B, Pilgram T, Huang SH (1999) Sagittal craniosynostosis outcome assessment for two methods and timings of intervention. Plast Reconstr Surg 103:1574–1584CrossRefPubMedGoogle Scholar
  17. 17.
    Pappa H, Richardson D, Webb AA, May P (2009) Individualized template-guided remodeling of the fronto-orbital bandeau in craniosynostosis corrective surgery. J Craniofac Surg 20:178–179CrossRefPubMedGoogle Scholar
  18. 18.
    Posnick JC, Lin KY, Chen P, Armstrong D (1993) Sagittal synostosis: quantitative assessment of presenting deformity and surgical results based on CT scans. Plast Reconstr Surg 92:1015–1024CrossRefPubMedGoogle Scholar
  19. 19.
    Santos J, Foley S, Paulo G, McEntee MF, Rainford L (2015) The impact of pediatric-specific dose modulation curves on radiation dose and image quality in head computed tomography. Pediatr Radiol 45(12):1814–1822CrossRefPubMedGoogle Scholar
  20. 20.
    Seruya M, Borsuk DE, Khalifian S, Carson BS, Dalesio NM, Dorafshar AH (2013) Computer-aided design and manufacturing in craniosynostosis surgery. J Craniofac Surg 24(4):1100–1105CrossRefPubMedGoogle Scholar
  21. 21.
    Tepper OM, Sorice S, Hershman GN, Saadeh P, Levine JP, Hirsch D (2011) Use of virtual 3-dimensional surgery in post-traumatic craniomaxillofacial reconstruction. J Oral Maxillofac Surg 69:733–741CrossRefPubMedGoogle Scholar
  22. 22.
    Yáñez-Vico RM, Iglesias-Linares A, Torres-Lagares D, Gutiérrez-Pérez JL, Solano-Reina E (2013) A new three-dimensional analysis of asymmetry for patients with craniofacial syndromes. Oral Dis 19:755–762CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leo M. Davidoff Department of Neurological SurgeryMontefiore Medical Center/Albert Einstein College of MedicineBronxUSA

Personalised recommendations