Skip to main content

Problems of reconstructive cranioplasty after traumatic brain injury in children

Abstract

Cranial repair after traumatic brain injury in children is still burdened by unsolved problems and controversial issues, mainly due to the high rate of resorption of autologous bone as well as the absence of valid alternative material to replace the autologous bone. Indeed, inert biomaterials are associated to satisfactory results in the short period but bear the continuous risk of complications related to the lack of osteointegration capacity. Biomimetic materials claiming osteoconductive properties that could balance their mechanical limits seem to allow good cranial bone reconstruction. However, these results should be confirmed in the long term and in larger series. Further complicating factors that may affect cranial reconstruction after head injury should be identified in the possible associated alterations of CSF dynamics and in difficulties to manage the traumatic skin lesion and the surgical wound, which also might impact on the cranioplasty outcome. All the abovementioned considerations should be taken into account when dealing with the cranial reconstruction after decompressive craniectomy in children.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Halani SH, Chu JK, Malcolm JG, Rindler RS, Allen JW, Grossberg JA, Pradilla G, Ahmad FU (2017) Effects of cranioplasty on cerebral blood flow following decompressive craniectomy: a systematic review of the literature. Neurosurgery

  2. 2.

    De Bonis P, Frassanito P, Mangiola A, Nucci CG, Anile C, Pompucci A (2012) Cranial repair: how complicated is filling a “hole”? J Neurotrauma 29:1071–1076

    Article  PubMed  Google Scholar 

  3. 3.

    Grant GA, Jolley M, Ellenbogen RG, Roberts TS, Gruss JR, Loeser JD (2004) Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. J Neurosurg 100:163–168

    PubMed  Google Scholar 

  4. 4.

    Bowers CA, Riva-Cambrin J, Hertzler DA 2nd, Walker ML (2013) Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury. J Neurosurg Pediatr 11:526–532

    Article  PubMed  Google Scholar 

  5. 5.

    Rocque BG, Amancherla K, Lew SM, Lam S (2013) Outcomes of cranioplasty following decompressive craniectomy in the pediatric population. J Neurosurg Pediatr 12:120–125

    Article  PubMed  Google Scholar 

  6. 6.

    Wachter D, Reineke K, Behm T, Rohde V (2013) Cranioplasty after decompressive hemicraniectomy: underestimated surgery-associated complications? Clin Neurol Neurosurg 115:1293–1297

    Article  PubMed  Google Scholar 

  7. 7.

    Martin KD, Franz B, Kirsch M, Polanski W, von der Hagen M, Schackert G, Sobottka SB (2014) Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients. Acta Neurochir 156:813–824

    Article  PubMed  Google Scholar 

  8. 8.

    Frassanito P, Massimi L, Caldarelli M, Tamburrini G, Di Rocco C (2012) Complications of delayed cranial repair after decompressive craniectomy in children less than 1 year old. Acta Neurochir 154:927–933

    Article  PubMed  Google Scholar 

  9. 9.

    Frassanito P, Massimi L, Caldarelli M, Tamburrini G, Di Rocco C (2014) Bone flap resorption in infants. J Neurosurg Pediatr 13:243–244

    Article  PubMed  Google Scholar 

  10. 10.

    Prasad GL, Gupta DK, Mahapatra AK, Sharma BS (2015) Surgical results of decompressive craniectomy in very young children: a level one trauma centre experience from India. Brain Inj 29:1717–1724

    Article  PubMed  Google Scholar 

  11. 11.

    Jagannathan J, Okonkwo DO, Dumont AS, Ahmed H, Bahari A, Prevedello DM, Jane JA Sr, Jane JA Jr (2007) Outcome following decompressive craniectomy in children with severe traumatic brain injury: a 10-year single-center experience with long-term follow up. J Neurosurg 106:268–275

    Article  PubMed  Google Scholar 

  12. 12.

    Beuriat PA, Javouhey E, Szathmari A, Courtil-Tesseydre S, Desgranges FP, Grassiot B, Hequet O, Mottolese C (2015) Decompressive craniectomy in the treatment of post-traumatic intracranial hypertension in children: our philosophy and indications. J Neurosurg Sci 59:405–428

    CAS  PubMed  Google Scholar 

  13. 13.

    Sahuquillo J, Arikan F (2006) Decompressive craniectomy for the treatment of refractory high intracranial pressure in traumatic brain injury. Cochrane Database Syst Rev: CD003983

  14. 14.

    Yadla S, Campbell PG, Chitale R, Maltenfort MG, Jabbour P, Sharan AD (2011) Effect of early surgery, material, and method of flap preservation on cranioplasty infections: a systematic review. Neurosurgery 68:1124–1129 discussion 1130

    Article  PubMed  Google Scholar 

  15. 15.

    Sgouros S, Goldin JH, Hockley AD, Wake MJ, Natarajan K (1999) Intracranial volume change in childhood. J Neurosurg 91:610–616

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Williams PL, Warwick R (1980) Gray’s anatomy. W.B. Saunders Co/Churchill Livingstone, Philadelphia

    Google Scholar 

  17. 17.

    Fong KD, Warren SM, Loboa EG, Henderson JH, Fang TD, Cowan CM, Carter DR, Longaker MT (2003) Mechanical strain affects dura mater biological processes: implications for immature calvarial healing. Plast Reconstr Surg 112:1312–1327

    Article  PubMed  Google Scholar 

  18. 18.

    Piitulainen JM, Kauko T, Aitasalo KM, Vuorinen V, Vallittu PK, Posti JP (2015) Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg 83:708–714

    Article  PubMed  Google Scholar 

  19. 19.

    Lemee JM, Petit D, Splingard M, Menei P (2013) Autologous bone flap versus hydroxyapatite prosthesis in first intention in secondary cranioplasty after decompressive craniectomy: a French medico-economical study. Neurochirurgie 59:60–63

    Article  PubMed  Google Scholar 

  20. 20.

    Ozerdem OR, Sen O, Anlatici R, Erdogan B, Aydin V (2002) Osteogaleal flaps in pediatric cranioplasty. Ann Plast Surg 49:127–132

    Article  PubMed  Google Scholar 

  21. 21.

    Servadei F, Iaccarino C (2015) The therapeutic cranioplasty still needs an ideal material and surgical timing. World Neurosurg 83:133–135

    Article  PubMed  Google Scholar 

  22. 22.

    Lee SC, Wu CT, Lee ST, Chen PJ (2009) Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci 16:56–63

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Goodrich JT, Sandler AL, Tepper O (2012) A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors. Childs Nerv Syst 28:1577–1588

    Article  PubMed  Google Scholar 

  24. 24.

    Feroze AH, Walmsley GG, Choudhri O, Lorenz HP, Grant GA, Edwards MS (2015) Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends. J Neurosurg 123:1098–1107

    Article  PubMed  Google Scholar 

  25. 25.

    Williams L, Fan K, Bentley R (2016) Titanium cranioplasty in children and adolescents. J Craniomaxillofac Surg 44:789–794

    Article  PubMed  Google Scholar 

  26. 26.

    Blum KS, Schneider SJ, Rosenthal AD (1997) Methyl methacrylate cranioplasty in children: long-term results. Pediatr Neurosurg 26:33–35

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Fiaschi P, Pavanello M, Imperato A, Dallolio V, Accogli A, Capra V, Consales A, Cama A, Piatelli G (2016) Surgical results of cranioplasty with a polymethylmethacrylate customized cranial implant in pediatric patients: a single-center experience. J Neurosurg Pediatr 17:705–710

    Article  PubMed  Google Scholar 

  28. 28.

    Shah AM, Jung H, Skirboll S (2014) Materials used in cranioplasty: a history and analysis. Neurosurg Focus 36:E19

    Article  PubMed  Google Scholar 

  29. 29.

    Lin AY, Kinsella CR Jr, Rottgers SA, Smith DM, Grunwaldt LJ, Cooper GM, Losee JE (2012) Custom porous polyethylene implants for large-scale pediatric skull reconstruction: early outcomes. J Craniofac Surg 23:67–70

    Article  PubMed  Google Scholar 

  30. 30.

    Piitulainen JM, Posti JP, Aitasalo KM, Vuorinen V, Vallittu PK, Serlo W (2015) Paediatric cranial defect reconstruction using bioactive fibre-reinforced composite implant: early outcomes. Acta Neurochir 157:681–687

    Article  PubMed  Google Scholar 

  31. 31.

    Biskup NI, Singh DJ, Beals S, Joganic EF, Manwaring K (2010) Pediatric cranial vault defects: early experience with beta-tricalcium phosphate bone graft substitute. J Craniofac Surg 21:358–362

    Article  PubMed  Google Scholar 

  32. 32.

    Messina G, Dones I, Nataloni A, Franzini A (2011) Histologically demonstrated skull bone integration in a hydroxyapatite prosthesis in a human. Acta Neurochir 153:1717–1718

    Article  PubMed  Google Scholar 

  33. 33.

    Zaccaria L, Tharakan SJ, Altermatt S (2017) Hydroxyapatite ceramic implants for cranioplasty in children: a single-center experience. Childs Nerv Syst 33:343–348

    Article  PubMed  Google Scholar 

  34. 34.

    Stefini R, Zanotti B, Nataloni A, Martinetti R, Scafuto M, Colasurdo M, Tampieri A (2015) The efficacy of custom-made porous hydroxyapatite prostheses for cranioplasty: evaluation of postmarketing data on 2697 patients. J Appl Biomater Funct Mater 13:e136–e144

    CAS  PubMed  Google Scholar 

  35. 35.

    Frassanito P, Tamburrini G, Massimi L, Di Rocco C, Nataloni A, Fabbri G, Caldarelli M (2015) Post-marketing surveillance of CustomBone service implanted in children under 7 years old. Acta Neurochir 157:115–121

    Article  PubMed  Google Scholar 

  36. 36.

    Stefini R, Esposito G, Zanotti B, Iaccarino C, Fontanella MM, Servadei F (2013) Use of “custom made” porous hydroxyapatite implants for cranioplasty: postoperative analysis of complications in 1549 patients. Surg Neurol Int 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Payne KF, Balasundaram I, Deb S, Di Silvio L, Fan KF (2014) Tissue engineering technology and its possible applications in oral and maxillofacial surgery. Br J Oral Maxillofac Surg 52:7–15

    Article  PubMed  Google Scholar 

  38. 38.

    Villa MM, Wang L, Huang J, Rowe DW, Wei M (2014) Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B Appl Biomater

  39. 39.

    Thesleff T, Lehtimaki K, Niskakangas T, Mannerstrom B, Miettinen S, Suuronen R, Ohman J (2011) Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction. Neurosurgery 68:1535–1540

    Article  PubMed  Google Scholar 

  40. 40.

    Rish BL, Dillon JD, Meirowsky AM, Caveness WF, Mohr JP, Kistler JP, Weiss GH (1979) Cranioplasty: a review of 1030 cases of penetrating head injury. Neurosurgery 4:381–385

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Chang V, Hartzfeld P, Langlois M, Mahmood A, Seyfried D (2010) Outcomes of cranial repair after craniectomy. J Neurosurg 112:1120–1124

    Article  PubMed  Google Scholar 

  42. 42.

    Quah BL, Low HL, Wilson MH, Bimpis A, Nga VD, Lwin S, Zainuddin NH, Wahab NA, Salek MA (2016) Is there an optimal time for performing cranioplasties? Results from a prospective multinational study. World Neurosurg 94:13–17

    Article  PubMed  Google Scholar 

  43. 43.

    Duke BJ, Mouchantat RA, Ketch LL, Winston KR (1996) Transcranial migration of microfixation plates and screws. Case report. Pediatr Neurosurg 25:31–34 discussion 35

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Tubbs RS, Verma K, Riech S, Mortazavi M, Oakes WJ, Cohen-Gadol AA (2011) Reaction to silk suture in children undergoing neurosurgery: case reports and review of the literature. Childs Nerv Syst 27:497–499

    Article  PubMed  Google Scholar 

  45. 45.

    Shido H, Sakamoto Y, Miwa T, Ohira T, Yoshida K, Kishi K (2013) The RIVET: a novel technique involving absorbable fixation for hydroxyapatite osteosynthesis. J Craniofac Surg 24:946–948

    Article  PubMed  Google Scholar 

  46. 46.

    Cordaro ER, Calabrese S, Faini GP, Zanotti B, Verlicchi A, Parodi PC (2011) Method to thicken the scalp in calvarian reconstruction. J Craniofac Surg 22:598–601

    Article  PubMed  Google Scholar 

  47. 47.

    Morice A, Kolb F, Picard A, Kadlub N, Puget S (2017) Reconstruction of a large calvarial traumatic defect using a custom-made porous hydroxyapatite implant covered by a free latissimus dorsi muscle flap in an 11-year-old patient. J Neurosurg Pediatr 19:51–55

    Article  PubMed  Google Scholar 

  48. 48.

    Kan P, Amini A, Hansen K, White GL Jr, Brockmeyer DL, Walker ML, Kestle JR (2006) Outcomes after decompressive craniectomy for severe traumatic brain injury in children. J Neurosurg 105:337–342

    PubMed  Google Scholar 

  49. 49.

    Pechmann A, Anastasopoulos C, Korinthenberg R, van Velthoven-Wurster V, Kirschner J (2015) Decompressive craniectomy after severe traumatic brain injury in children: complications and outcome. Neuropediatrics 46:5–12

    Article  PubMed  Google Scholar 

  50. 50.

    Honeybul S, Ho KM (2012) Incidence and risk factors for post-traumatic hydrocephalus following decompressive craniectomy for intractable intracranial hypertension and evacuation of mass lesions. J Neurotrauma 29:1872–1878

    Article  PubMed  Google Scholar 

  51. 51.

    Haines DE, Harkey HL, al-Mefty O (1993) The “subdural” space: a new look at an outdated concept. Neurosurgery 32:111–120

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Hasegawa M, Yamashima T, Yamashita J, Suzuki M, Shimada S (1992) Traumatic subdural hygroma: pathology and meningeal enhancement on magnetic resonance imaging. Neurosurgery 31:580–585

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Breisch E, Haas EA, Masoumi H, Chadwick AE, Krous HF (2010) A morphometric analysis of the infant calvarium and dura. Forensic Sci Med Pathol 6:249–254

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Mack J, Squier W, Eastman JT (2009) Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Pediatr Radiol 39:200–210

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paolo Frassanito.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests to disclose.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frassanito, P., Tamburrini, G., Massimi, L. et al. Problems of reconstructive cranioplasty after traumatic brain injury in children. Childs Nerv Syst 33, 1759–1768 (2017). https://doi.org/10.1007/s00381-017-3541-8

Download citation

Keywords

  • Reconstructive cranioplasty
  • Brain injury
  • Autologous bone
  • Decompressive craniectomy
  • Alloplastic material
  • Biomaterial
  • Hydroxyapatite