Skip to main content

Non-invasive intracranial pressure assessment

Abstract

Assessing intracranial pressure (ICP) remains a cornerstone in neurosurgical care. Invasive techniques for monitoring ICP remain the gold standard. The need for a reliable, safe and reproducible technique to non-invasively assess ICP in the context of early screening and in the neurocritical care environment is obvious. Numerous techniques have been described with several novel advances. While none of the currently available techniques appear independently accurate enough to quantify raised ICP, there is some promising work being undertaken.

This is a preview of subscription content, access via your institution.

References

  1. Guillaume J, Janny P (1951) Continuous intracranial manometry; importance of the method and first results. Rev Neurol 84(2):131

    CAS  PubMed  Google Scholar 

  2. Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl 36(Suppl 149):1–193

    CAS  PubMed  Google Scholar 

  3. Saul TG, Ducker TB (1982) Effect of intracranial pressure monitoring and aggressive treatment on mortality in severe head injury. J Neurosurg 56(4):498–503

    CAS  PubMed  Article  Google Scholar 

  4. Miller JD, Becker DP, Ward JD, Sullivan HG, Adams WE, Rosner MJ (1977) Significance of intracranial hypertension in severe head injury. J Neurosurg 47(4):503–516

    CAS  PubMed  Article  Google Scholar 

  5. Avezaat CJ, Van Eijndhoven JH, Wyper DJ (1979) Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry 42(8):687–700

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Marmarou A, Anderson RL, Ward JD et al (1981) Impact of ICP instability and hypotension on outcome in patients with severe head trauma. Special Supplements 75(1):59–66

    Google Scholar 

  7. Becker DP, Miller JD, Ward JD, Greenberg RP, Young HF, Sakalas R (1977) The outcome from severe head injury with early diagnosis and intensive management. J Neurosurg 47(4):491–502

    CAS  PubMed  Article  Google Scholar 

  8. Marshall LF, Smith RW, Shapiro HM (1979) The outcome with aggressive treatment in severe head injuries: part I: the significance of intracranial pressure monitoring. J Neurosurg 50(1):20–25

    CAS  PubMed  Article  Google Scholar 

  9. Smith M (2008) Monitoring intracranial pressure in traumatic brain injury. Anesth Analg 106(1):240–248

    PubMed  Article  Google Scholar 

  10. Chesnut RM, Marshall LF, Marshall SB (1993) Medical management of intracranial pressure. Head Injury 4:229–263

    Google Scholar 

  11. Salim A, Hannon M, Brown C et al (2008) Intracranial pressure monitoring in severe isolated pediatric blunt head trauma. Am Surg 74(11):1088–1093

    PubMed  Google Scholar 

  12. Shafi S, Diaz-Arrastia R, Madden C, Gentilello L (2008) Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma Acute Care Surg 64(2):335–340

    Article  Google Scholar 

  13. Czosnyka M, Pickard JD (2004) Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry 75(6):813–821

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Padayachy LC, Figaji AA, Bullock MR (2010) Intracranial pressure monitoring for traumatic brain injury in the modern era. Childs Nerv Syst 26(4):441–452

    PubMed  Article  Google Scholar 

  15. Citerio G, Andrews PJ (2004) Intracranial pressure. Intensive Care Med 30(10):1882–1885

    PubMed  Article  Google Scholar 

  16. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–17

    CAS  PubMed  Article  Google Scholar 

  17. Treggiari MM, Schutz N, Yanez ND, Romand JA (2007) Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care 6(2):104–112

    PubMed  Article  Google Scholar 

  18. Wiegand C, Richards P (2007) Measurement of intracranial pressure in children: a critical review of current methods. Dev Med Child Neurol 49(12):935–941

    CAS  PubMed  Article  Google Scholar 

  19. Kristiansson H, Nissborg E, Bartek J Jr, Andresen M, Reinstrup P, Romner B (2013) Measuring elevated intracranial pressure through noninvasive methods: a review of the literature. J Neurosurg Anesthesiol 25(4):372–385

    PubMed  Article  Google Scholar 

  20. Adelson PD, Bratton SL, Carney NA et al (2003) Guidelines for the acute medical management of severe traumatic brain injury in infants, children, and adolescents. Chapter 5. Indications for intracranial pressure monitoring in pediatric patients with severe traumatic brain injury. Pediatr Crit Care Med 4(3 Suppl):S19–24

    PubMed  Google Scholar 

  21. Morris KP, Forsyth RJ, Parslow RC et al (2006) UK Paediatric Traumatic Brain Injury Study Group. Intracranial pressure complicating severe traumatic brain injury in children: monitoring and management. Intensive Care Med 32(10):1606–1612

    PubMed  Article  Google Scholar 

  22. Chambers IR, Siddique MS, Banister K, Mendelow AD (2001) Clinical comparison of the Spiegelberg parenchymal transducer and ventricular fluid pressure. J Neurol Neurosurg Psychiatry 71(3):383–385

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Michaud LJ, Rivara FP, Grady MS, Reay DT (1992) Predictors of survival and severity of disability after severe brain injury in children. Neurosurgery 31(2):254–26

    CAS  PubMed  Article  Google Scholar 

  24. Rosenberg JB, Shiloh AL, Savel RH, Eisen LA (2011) Non-invasive methods of estimating intracranial pressure. Neurocrit Care 15(3):599–608

    PubMed  Article  Google Scholar 

  25. Raboel PH, Bartek J, Andresen M, Bellander BM, Romner B (2012) Intracranial pressure monitoring: invasive versus non-invasive methods—a review. Crit Care Res Pract 2012(12):1–14

    Article  Google Scholar 

  26. Anderson RC, Kan P, Klimo P, Brockmeyer DL, Walker ML, Kestle JR (2004) Complications of intracranial pressure monitoring in children with head trauma. J Neurosurg Pediatr 101(2):53–58

    Article  Google Scholar 

  27. Bratton SL, Chestnut RM, Ghajar J et al (2006) Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma 24(S1):S37–44

    Google Scholar 

  28. Hanlo PW, Gooskens RH, Faber JA et al (1996) Relationship between anterior fontanelle pressure measurements and clinical signs in infantile hydrocephalus. Childs Nerv Syst 12(4):200–209

    CAS  PubMed  Article  Google Scholar 

  29. Wealthall SR, Smallwood R (1974) Methods of measuring intracranial pressure via the fontanelle without puncture. J Neurol Neurosurg Psychiatry 37(1):88–96

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Tuite GF, Chong WK, Evanson J et al (1996) The effectiveness of papilledema as an indicator of raised intracranial pressure in children with craniosynostosis. Neurosurgery 38(2):272–278

    CAS  PubMed  Article  Google Scholar 

  31. Sajjadi SA, Harirchian MH, Sheikhbahaei N, Mohebbi MR, Malekmadani MH, Saberi H (2006) The relation between intracranial and intraocular pressures: study of 50 patients. Ann Neurol 59(5):867–870

    PubMed  Article  Google Scholar 

  32. Hedges TR, Zaren HA (1973) The relationship of optic nerve tissue pressure to intracranial and systemic arterial pressure. Am J Ophthalmol 75(1):90–98

    CAS  PubMed  Article  Google Scholar 

  33. Hedges TR (1974) Papilledema: its recognition and relation to increased intracranial pressure. Surv Ophthalmol 19(4):201–223

    Google Scholar 

  34. Jacks AS, Miller NR (2003) Spontaneous retinal venous pulsation: aetiology and significance. J Neurol Neurosurg Psychiatry 74(1):7–9

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Levin BE (1978) The clinical significance of spontaneous pulsations of the retinal vein. Arch Neurol 35(1):37–40

    CAS  PubMed  Article  Google Scholar 

  36. Wong SH, White RP (2013) The clinical validity of the spontaneous retinal venous pulsation. J Neuroophthalmol 33(1):17–20

    PubMed  Article  Google Scholar 

  37. Larson MD, Muhiudeen I (1995) Pupillometric analysis of the absent light reflex. Arch Neurol 52(4):369–372

    CAS  PubMed  Article  Google Scholar 

  38. Du R, Meeker M, Bacchetti P, Larson MD, Holland MC, Manley GT (2005) Evaluation of the portable infrared pupillometer. Neurosurgery 57(1):198–203

    PubMed  Article  Google Scholar 

  39. Taylor WR, Chen JW, Meltzer H et al (2003) Quantitative pupillometry, a new technology: normative data and preliminary observations in patients with acute head injury: technical note. J Neurosurg 98(1):205–213

    PubMed  Article  Google Scholar 

  40. Boev AN, Fountas KN, Karampelas I et al (2005) Quantitative pupillometry: normative data in healthy pediatric volunteers. J Neurosurg Pediatr 103(6 Suppl):496–500

    Article  Google Scholar 

  41. Lashutka MK, Chandra A, Murray HN, Phillips GS, Hiestand BC (2004) The relationship of intraocular pressure to intracranial pressure. Ann Emerg Med 43(5):585–591

    PubMed  Article  Google Scholar 

  42. Salman MS (1997) Can intracranial pressure be measured non-invasively? Lancet 350(9088):1367

    CAS  PubMed  Article  Google Scholar 

  43. Czarnik T, Gawda R, Kolodziej W, Latka D, Sznajd-Weron K, Weron R (2009) Associations between intracranial pressure, intraocular pressure and mean arterial pressure in patients with traumatic and non-traumatic brain injuries. Injury 40(1):33–39

    PubMed  Article  Google Scholar 

  44. Spentzas T, Henricksen J, Patters AB, Chaum E (2010) Correlation of intraocular pressure with intracranial pressure in children with severe head injuries. Pediatr Crit Care Med 11(5):593–598

    PubMed  Article  Google Scholar 

  45. Lehman RA, Krupin T, Podos SM (1972) Experimental effect of intracranial hypertension upon intraocular pressure. J Neurosurg 36(1):60–66

    CAS  PubMed  Article  Google Scholar 

  46. Yavin D, Luu J, James MT et al (2014) Diagnostic accuracy of intraocular pressure measurement for the detection of raised intracranial pressure: meta-analysis: a systematic review. J Neurosurg 121(3):680–687

    PubMed  Article  Google Scholar 

  47. Li Z, Yang Y, Lu Y et al (2012) Intraocular pressure vs intracranial pressure in disease conditions: a prospective cohort study (Beijing iCOP study). BMC Neurol 12(1):66

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Hee MR, Izatt JA, Swanson EA et al (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113(3):325–332

    CAS  PubMed  Article  Google Scholar 

  49. Scott CJ, Kardon RH, Lee AG, Frisen L, Wall M (2010) Diagnosis and grading of papilledema in patients with raised intracranial pressure using optical coherence tomography vs clinical expert assessment using a clinical staging scale. Arch Ophthalmol 128(6):705–711

    PubMed  Article  Google Scholar 

  50. Driessen C, Eveleens J, Bleyen I, Van Veelen ML, Joosten K, Mathiijssen I (2014) Optical coherence tomography: a quantitative tool to screen for papilledema in craniosynostosis. Childs Nerv Syst 30:1067–1073

    PubMed  Google Scholar 

  51. Anand A, Pass A, Urfy M et al (2016) Optical coherence tomography of the optic nerve head detects acute changes in intracranial pressure. J Clin Neurosci 29:73–76

    PubMed  Article  Google Scholar 

  52. Kruse FE, Burk RO, Völcker HE, Zinser G, Harbarth U (1989) Reproducibility of topographic measurements of the optic nerve head with laser tomographic scanning. Ophthalmology 96(9):1320–1324

    CAS  PubMed  Article  Google Scholar 

  53. Rohrschneider K, Burk RO, Kruse FE, Völcker HE (1998) Reproducibility of the optic nerve head topography with a new laser tomographic scanning device. Ophthalmology 101(6):1044–1049

    Article  Google Scholar 

  54. Trick GL, Vesti E, Tawansy K, Skarf B, Gartner J (1998) Quantitative evaluation of papilledema in pseudotumor cerebri. Invest Ophthalmol Vis Sci 39(10):1964–1971

    CAS  PubMed  Google Scholar 

  55. Heckmann JG, Weber M, Jünemann AG, Neundörfer B, Mardin CY (2004) Laser scanning tomography of the optic nerve vs CSF opening pressure in idiopathic intracranial hypertension. Neurology 62(7):1221–1223

    CAS  PubMed  Article  Google Scholar 

  56. Baurmann M (1925) On the origin and clinical significance of retinal venous pulse. Zusammenkunft Deutschen Ophthalmologie 45:53–59

    Google Scholar 

  57. Firsching R, Schütze M, Motschmann M, Behrens-Baumann W (2000) Venous ophthalmodynamometry: a noninvasive method for assessment of intracranial pressure. J Neurosurg 93(1):33–36

    CAS  PubMed  Article  Google Scholar 

  58. Geeraerts T, Duranteau J, Benhamou D (2008) Ocular sonography in patients with raised intracranial pressure: the papilloedema revisited. Crit Care 12(3):150

    PubMed  PubMed Central  Article  Google Scholar 

  59. Hansen HC, Helmke K (1996) The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. Surg Radiol Anat 18(4):323–328

    CAS  PubMed  Article  Google Scholar 

  60. Geeraerts T, Newcombe VF, Coles JP et al (2008) Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care 12(5):R114

    PubMed  PubMed Central  Article  Google Scholar 

  61. Gibby WA, Cohen MS, Goldberg HI, Sergott RC (1993) Pseudotumor cerebri: CT findings and correlation with vision loss. Am J Roentgenol 160(1):143–146

    CAS  Article  Google Scholar 

  62. Sekhon MS, Griesdale DE, Robba C et al (2014) Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med 40(9):1267–1274

    PubMed  Article  Google Scholar 

  63. Newman WD, Hollman AS, Dutton GN, Carachi R (2002) Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol 86(10):1109–1113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Padayachy LC, Kilborn T, Carrara H, Figaji A, Fieggen G (2015) Change in optic nerve sheath diameter as a radiological marker of outcome from endoscopic third ventriculostomy in children. Childs Nerv Syst 31(5):721–728

    PubMed  Article  Google Scholar 

  65. Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL (2011) Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care 15(3):506–515

    PubMed  Article  Google Scholar 

  66. Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A (2008) Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care 12(3):R67

    PubMed  PubMed Central  Article  Google Scholar 

  67. Kimberly HH, Shah S, Marill K, Noble V (2008) Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med 15(2):201–204

    PubMed  Article  Google Scholar 

  68. Hansen HC, Helmke K (1997) Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg 87(1):34–40

    CAS  PubMed  Article  Google Scholar 

  69. Wang L, Feng L, Yao Y et al (2015) Optimal optic nerve sheath diameter threshold for the identification of elevated opening pressure on lumbar puncture in a Chinese population. PLoS One 10(2):e0117939

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Helmke K, Hansen HC (1996) Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension. Pediatr Radiol 26(10):701–705

    CAS  PubMed  Article  Google Scholar 

  71. Ballantyne J, Hollman A, Hamilton R et al (1999) Transorbital optic nerve sheath ultrasonography in normal children. Clin Radiol 54(11):740–742

    CAS  PubMed  Article  Google Scholar 

  72. Padayachy LC, Padayachy V, Galal U, Pollock T, Fieggen AG (2016) The relationship between optic nerve sheath diameter (ONSD) measurement and invasively measured ICP. Part II: age related ONSD cut-off values and patency of the anterior fontanelle. Child’s Nerv Syst (in press)

  73. Steinborn M, Friedmann M, Makowski C, Hahn H, Hapfelmeier A, Juenger H (2016) High resolution transbulbar sonography in children with suspicion of increased intracranial pressure. Childs Nerv Syst 32(4):655–660

    PubMed  Article  Google Scholar 

  74. London A, Benhar I, Schwartz M (2013) The retina as a window to the brain—from eye research to CNS disorders. Nat Rev Neurol 9(1):44–53

    CAS  PubMed  Article  Google Scholar 

  75. Moretti R, Pizzi B (2011) Ultrasonography of the optic nerve in neurocritically ill patients. Acta Anaesthesiol Scand 55(6):644–652

    CAS  PubMed  Article  Google Scholar 

  76. Malayeri AA, Bavarian S, Mehdizadeh M (2005) Sonographic evaluation of optic nerve diameter in children with raised intracranial pressure. J Ultrasound Med 24(2):143–147

    PubMed  Google Scholar 

  77. Beare NA, Kampondeni S, Glover SJ et al (2008) Detection of raised intracranial pressure by ultrasound measurement of optic nerve sheath diameter in African children. Trop Med Int Health 13(11):1400–1404

    PubMed  PubMed Central  Article  Google Scholar 

  78. Steinborn M, Friedmann M, Hahn H et al (2015) Normal values for transbulbar sonography and magnetic resonance imaging of the optic nerve sheath diameter (ONSD) in children and adolescents. Ultraschall Med 36(1):54–58

    CAS  PubMed  Google Scholar 

  79. Dubourg J, Javouhey E, Geeraerts T, Messerer M, Kassai B (2011) Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 37(7):1059–1068

    PubMed  Article  Google Scholar 

  80. Soldatos T, Chatzimichail K, Papathanasiou M, Gouliamos A (2009) Optic nerve sonography: a new window for the non-invasive evaluation of intracranial pressure in brain injury. Emerg Med J 26(9):630–634

    CAS  PubMed  Article  Google Scholar 

  81. Padayachy L, Padayachy V, Galal U, Grey R, Fieggen G (2016) The relationship between transorbital ultrasound measurement of the optic nerve sheath diameter (ONSD) and invasively measured ICP in children. Part I: repeatability, observer variability and general analysis. Childs Nerv Syst (in press)

  82. Girisgin AS, Kalkan E, Kocak S, Cander B, Gul M, Semiz M (2007) The role of optic nerve ultrasonography in the diagnosis of elevated intracranial pressure. Emerg Med J 24(4):251–254

    PubMed  PubMed Central  Article  Google Scholar 

  83. Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M (2007) Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med 49(4):508–514

    PubMed  Article  Google Scholar 

  84. Major R, Girling S, Boyle A (2011) Ultrasound measurement of optic nerve sheath diameter in patients with a clinical suspicion of raised intracranial pressure. Emerg Med J 28(8):679–81

    PubMed  Article  Google Scholar 

  85. Reid A, Marchbanks RJ, Burge DM, Martin AM, Bateman DE, Pickard JD et al (1990) The relationship between intracranial pressure and tympanic membrane displacement. Br J Audiol 24:123–9

    CAS  PubMed  Article  Google Scholar 

  86. Gwer S, Sheward V, Birch A, Marchbanks R, Idro R, Newton C, Kirkham F, Lin J-P, Lim M (2013) The tympanic membrane displacement analyser for monitoring intracranial pressure in children. Child’s Nerv Syst 29:927–33

    Article  Google Scholar 

  87. Samuel M, Burge DM, Marchbanks RJ (1998) Quantitative assessment of intracranial pressure by the tympanic membrane displacement audiometric technique in children with shunted hydrocephalus. Eur J Pediatr Surg 8(4):200–207

    CAS  PubMed  Article  Google Scholar 

  88. Jerin C, Berman A, Krause E, Ertl-Wagner B, Gürkov R (2014) Ocular vestibular evoked myogenic potential frequency tuning in certain Meniere’s disease. Hear Res 310:54–59

    PubMed  Article  Google Scholar 

  89. Shimbles S, Dodd C, Banister K, Mendelow AD, Chambers IR (2005) Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements. Physiol Meas 26(6):1085

    CAS  PubMed  Article  Google Scholar 

  90. Silverman CA, Linstrom CJ (2013) How to measure cerebrospinal fluid pressure invasively and noninvasively. J Glaucoma 22:S26–S28

    PubMed  Article  Google Scholar 

  91. Voss SE, Horton NJ, Tabucchi TH, Folowosele FO, Shera CA (2006) Posture-induced changes in distortion-product otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure. Neurocrit Care 4(3):251–257

    PubMed  Article  Google Scholar 

  92. Büki B, Avan P, Lemaire JJ, Dordain M, Chazal J, Ribari O (1996) Otoacoustic emissions: a new tool for monitoring intracranial pressure changes through stapes displacements. Hear Res 94(1):125–139

    PubMed  Article  Google Scholar 

  93. Frank AM, Alexiou C, Hulin P, Janssen T, Arnold W, Trappe AE (1999) Non-invasive measurement of intracranial pressure changes by otoacoustic emissions (OAEs)—a report of preliminary data. Zentralbl Neurochir 61(4):177–180

    Article  Google Scholar 

  94. Kiesler J, Ricer R (2003) The abnormal fontanel. Am Fam Physician 67(12):2547–2552

    PubMed  Google Scholar 

  95. Purin VR (1964) Measurement of the cerebrospinal fluid pressure in the infant without puncture. A new method. Pediatriya 43:82–85

    CAS  Google Scholar 

  96. Vidyasagar D, Raju TNK (1977) A simple noninvasive technique of measuring intracranial pressure in the newborn. Pediatrics 59(6):957–961

    PubMed  Google Scholar 

  97. Peters RJA, Hanlo PW, Gooskens RHJ, Braun KPJ, Tulleken CAF, Willemse J (2005) Non-invasive ICP monitoring in infants: the Rotterdam Teletransducer revisited. Childs Nerv Syst 11(4):207–213

    Article  Google Scholar 

  98. Behmanesh B, Setzer M, Noack A, Bartels M, Quick-Weller J, Seifert V, Freiman TM (2016) Noninvasive epicutaneous transfontanelle intracranial pressure monitoring in children under the age of 1 year: a novel technique. J Neurosurg Pediatr 27:1–5

    Google Scholar 

  99. Lupetin AR, Davis DA, Beckham I, Dash N (1995) Transcranial Doppler sonography. Part 1. Principles, technique, and normal appearances. Radiographics 15(1):179–191

    CAS  PubMed  Article  Google Scholar 

  100. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive intracranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774

    CAS  PubMed  Article  Google Scholar 

  101. Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62(1):45–51

    PubMed  Article  Google Scholar 

  102. Adams RJ (2005) TCD in sickle cell disease: an important and useful test. Pediatr Radiol 35(3):229–234

    PubMed  Article  Google Scholar 

  103. Radolovich DK, Aries MJH, Castellani G et al (2011) Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury. Neurocrit Care 15(3):379–386

    CAS  PubMed  Article  Google Scholar 

  104. Leliefeld PH, Gooskens RH, Peters RJ et al (2009) New transcranial Doppler index in infants with hydrocephalus: transsystolic time in clinical practice. Ultrasound Med Biol 35(10):1601–1606

    PubMed  Article  Google Scholar 

  105. Krejza J, Mariak Z, Babikian V (2001) Importance of angle correction in the measurement of blood flow velocity with transcranial Doppler sonography. Am J Neuroradiol 22:1743–1747

    CAS  PubMed  Google Scholar 

  106. Voulgaris SG, Partheni M, Kaliora H, Haftouras N, Pessach IS, Polyzoidis KS (2005) Early cerebral monitoring using the transcranial Doppler pulsatility index in patients with severe brain trauma. Ann Transplant 11(2):CR49–CR52

    Google Scholar 

  107. Figaji AA, Zwane E, Fieggen AG, Siesjo P, Peter JC (2009) Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol 72(4):389–394

    PubMed  Article  Google Scholar 

  108. Melo JRT, Di Rocco F, Blanot S et al (2011) Transcranial Doppler can predict intracranial hypertension in children with severe traumatic brain injuries. Childs Nerv Syst 27(6):979–984

    PubMed  Article  Google Scholar 

  109. Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T (2000) MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study 1. Radiology 217(3):877–885

    CAS  PubMed  Article  Google Scholar 

  110. Alperin N, Hushek SG, Lee SH, Sivaramakrishnan A, Lichtor T (2005) MRI study of cerebral blood flow and CSF flow dynamics in an upright posture: the effect of posture on the intracranial compliance and pressure. Acta Neurochir Suppl 95:177–181

    CAS  PubMed  Article  Google Scholar 

  111. Muehlmann M, Koerte IK, Laubender RP et al (2013) Magnetic resonance-based estimation of intracranial pressure correlates with ventriculoperitoneal shunt valve opening pressure setting in children with hydrocephalus. Invest Radiol 48(7):543–547

    PubMed  Article  Google Scholar 

  112. Glick RP, Niebruegge J, Lee SH, Egibor O, Lichtor T, Alperin N (2006) Early experience from the application of a noninvasive magnetic resonance imaging-based measurement of intracranial pressure in hydrocephalus. Neurosurgery 59(5):1052–1061

    PubMed  Google Scholar 

  113. Ghosh A, Elwell C, Smith M (2012) Cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 115(6):1373–1383

    CAS  PubMed  Article  Google Scholar 

  114. Kampfl A, Pfausler B, Denchev D, Jaring P, Schmutzhard E (1997) Near infrared spectroscopy (NIRS) in patients with severe brain injury and elevated intracranial pressure. Acta Neurochir Suppl 70:112–114

    CAS  PubMed  Google Scholar 

  115. Weerakkody RA, Czosnyka M, Zweifel C et al (2012) Near infrared spectroscopy as possible non-invasive monitor of slow vasogenic ICP waves. Acta Neurochir Suppl 114:181–185

    PubMed  Article  Google Scholar 

  116. Zweifel C, Castellani G, Czosnyka M et al (2010) Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 41(9):1963–1968

    PubMed  Article  Google Scholar 

  117. Chen H, Wang J, Mao S, Dong W, Yang H (2012) A new method of intracranial pressure monitoring by EEG power spectrum analysis. Can J Neurol Sci 39(4):483–487

    PubMed  Article  Google Scholar 

  118. Liasis A, Thompson DA, Hayward R, Nischal KK (2003) Sustained raised intracranial pressure implicated only by pattern reversal visual evoked potentials after cranial vault expansion surgery. Pediatr Neurosurg 39(2):75–80

    PubMed  Article  Google Scholar 

  119. Rosenfeld JP, Owen RL (1972) Instrumental conditioning of photic evoked potentials: mechanisms and properties of late component modification. Physiol Behav 9(5):851–858

    CAS  PubMed  Article  Google Scholar 

  120. Wu X, Ji Z (2007) Non-invasive detection for intracranial high pressure with FVEP picked-up by independent component analysis. J Biomed Eng 24(5):1015–1018

    Google Scholar 

  121. York DH, Pulliam MW, Rosenfeld JG, Watts C (1981) Relationship between visual evoked potentials and intracranial pressure. J Neurosurg 55(6):909–916

    CAS  PubMed  Article  Google Scholar 

  122. York D, Legan M, Benner S, Watts C (1984) Further studies with a noninvasive method of intracranial pressure estimation. Neurosurgery 14(4):456–461

    CAS  PubMed  Article  Google Scholar 

  123. Desch LW (2001) Longitudinal stability of visual evoked potentials in children and adolescents with hydrocephalus. Dev Med Child Neurol 43(02):113–117

    CAS  PubMed  Article  Google Scholar 

  124. Zhao YL, Zhou JY, Zhu GH (2005) Clinical experience with the noninvasive ICP monitoring system. Acta Neurochir Suppl 95:351–355

    CAS  PubMed  Article  Google Scholar 

  125. Andersson L, Sjölund J, Nilsson J (2012) Flash visual evoked potentials are unreliable as markers of ICP due to high variability in normal subjects. Acta Neurochir 154(1):121–127

    PubMed  Article  Google Scholar 

  126. Hiler M, Czosnyka M, Hutchinson P et al (2006) Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J Neurosurg 104(5):731–737

    PubMed  Article  Google Scholar 

  127. Tuite GF, Evanson J, Chong WK, Thompson DN, Harkness WF, Jones BM et al (1996) The beaten copper cranium: a correlation between intracranial pressure, cranial radiographs, and computed tomographic scans in children with craniosynostosis. Neurosurgery 39(4):691–699

    CAS  PubMed  Article  Google Scholar 

  128. Thompson P, Toga AW (1996) A surface-based technique for warping three-dimensional images of the brain. Medical Imaging 15(4):402–417

    CAS  PubMed  Article  Google Scholar 

  129. Reed MJ, Browning JG, Wilkinson AG, Beattie T (2005) Can we abolish skull X-rays for head injury? Arch Dis Child 90(8):859–864

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. Sadhu VK, Sampson J, Haar FL, Pinto RS, Handel SF (1979) Correlation between computed tomography and intracranial pressure monitoring in acute head trauma patients 1. Radiology 133(2):507–509

    CAS  PubMed  Article  Google Scholar 

  131. Eisenberg HM, Gary HE Jr, Aldrich EF et al (1990) Initial CT findings in 753 patients with severe head injury: a report from the NIH Traumatic Coma Data Bank. J Neurosurg 73(5):688–698

    CAS  PubMed  Article  Google Scholar 

  132. Eide PK (2003) The relationship between intracranial pressure and size of cerebral ventricles assessed by computed tomography. Acta Neurochir 145(3):171–179

    CAS  PubMed  Article  Google Scholar 

  133. Miller MT, Pasquale M, Kurek S et al (2004) Initial head computed tomographic scan characteristics have a linear relationship with initial intracranial pressure after trauma. J Trauma Acute Care Surg 56(5):967–973

    Article  Google Scholar 

  134. Toutant SM, Klauber MR, Marshall LF (1984) Absent or compressed basal cisterns on first CT scan: ominous predictors of outcome in severe head injury. J Neurosurg 61(4):691–694

    CAS  PubMed  Article  Google Scholar 

  135. Pauwels EK, Bourguignon MH (2012) Radiation dose features and solid cancer induction in pediatric computed tomography. Med Princ Pract 21(6):508–515

    PubMed  Article  Google Scholar 

  136. Bruwer GE, Van der Westhuizen S, Lombard CJ, Schoeman JF (2004) Can CT predict the level of CSF block in tuberculous hydrocephalus? Childs Nerv Syst 20(3):183–187

    CAS  PubMed  Article  Google Scholar 

  137. Schoeman JF, Van Zyl LE, Laubscher JA, Donald PR (1995) Serial CT scanning in childhood tuberculous meningitis: prognostic features in 198 cases. J Child Neurol 10(4):320–329

    CAS  PubMed  Article  Google Scholar 

  138. Krille L, Zeeb H, Jahnen A (2012) Computed tomographies and cancer risk in children: a literature overview of CT practices, risk estimations and an epidemiologic cohort study proposal. Radiat Environ Biophys 51(2):103–111

    PubMed  Article  Google Scholar 

  139. Mizutani T, Manaka S, Tsutsumi H (1990) Estimation of intracranial pressure using computed tomography scan findings in patients with severe head injury. Surg Neurol 33(3):178–184

    CAS  PubMed  Article  Google Scholar 

  140. Pearce MS, Salotti JA, Little MP et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505

    PubMed  PubMed Central  Article  Google Scholar 

  141. Brenner DJ, Hall EJ (2007) Computed tomography: an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    CAS  PubMed  Article  Google Scholar 

  142. Smyth MD, Narayan P, Tubbs RS et al (2008) Cumulative diagnostic radiation exposure in children with ventriculoperitoneal shunts: a review. Childs Nerv Syst 24(4):493–497

  143. Zhang X, Burstein R, Levy D (2012) Local action of the proinflammatory cytokines IL-1β and IL-6 on intracranial meningeal nociceptors. Cephalalgia 32(1):66–72

    CAS  PubMed  Article  Google Scholar 

  144. Marshall I, MacCormick I, Sellar R, Whittle I (2008) Assessment of factors affecting MRI measurement of intracranial volume changes and elastance index. Br J Neurosurg 22(3):389–397

    CAS  PubMed  Article  Google Scholar 

  145. Raskin PB, Alperin N, Sivaramakrishnan A, Surapaneni S, Lichtor T (2003) Noninvasive intracranial compliance and pressure based on dynamic magnetic resonance imaging of blood flow and cerebrospinal fluid flow: review of principles, implementation, and other noninvasive approaches. Neurosurg Focus 14(4):1–8

    Google Scholar 

  146. Gass A, Barker GJ, Riordan-Eva P et al (1996) MRI of the optic nerve in benign intracranial hypertension. Neuroradiology 38(8):769–773

    CAS  PubMed  Article  Google Scholar 

  147. Petkus V, Ragauskas A, Jurkinos R (2002) Investigation of intracranial media ultrasonic monitoring. Ultrasonics 40(1-8):829–33

    PubMed  Article  Google Scholar 

  148. Ragauskas A, Daubaris G, Ragaisis V, Petkus V (2003) Implementation of non-invasive brain physiological monitoring concepts. Med Eng Phys 25(8):667–78

    PubMed  Article  Google Scholar 

  149. Ragauskas A, Daubaris G, Dziugys A, Azelis V, Gedrimas V (2005) Innovative non-invasive method absolute intracranial pressure measurement without calibration. Acta Neurochir Suppl 95:357–61

    CAS  PubMed  Article  Google Scholar 

  150. Ragauskas A, Matijosaitis V, Zakelis R et al (2012) Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology 87(21):1684–91

    Article  Google Scholar 

  151. Bershad EM, Anand A, DeSantis SM, Yang M, Tang RA, Calvillo E, Malkin-Gosdin L, Foroozan R, Damani R, Maldonado N, Gupta P (2016) Clinical validation of a transcranial Doppler-based non-invasive ICP meter: a prospective cross-sectional study. World Neurosurg 89:647–653

    PubMed  Article  Google Scholar 

  152. Padayachy L, Brekken R, Fieggen A, Selbekk T (2016) Pulsatile dynamics of the optic nerve sheath and intracranial pressure: an exploratory in vivo investigation. Neurosurgery 79(1):100–107

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Llewellyn C. Padayachy.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Padayachy, L.C. Non-invasive intracranial pressure assessment. Childs Nerv Syst 32, 1587–1597 (2016). https://doi.org/10.1007/s00381-016-3159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-016-3159-2

Keywords

  • Intracranial pressure
  • Non-invasive monitoring techniques
  • Traumatic brain injury