Skip to main content
Log in

Phase I trial of weekly MK-0752 in children with refractory central nervous system malignancies: a pediatric brain tumor consortium study

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Amplification and high levels of NOTCH ligand expression have been identified in several types of pediatric brain tumors. A phase I trial of weekly MK-0752, an oral inhibitor of gamma-secretase, was conducted in children with recurrent central nervous system (CNS) malignancies to estimate the maximum tolerated dose, dose-limiting toxicities (DLT), pharmacokinetics (PK), and pharmacodynamics of weekly MK-0752.

Methods

MK-0752 was administered once weekly at 1000 and 1400 mg/m2 using a rolling-6 design. PK analysis was performed during the first course. NOTCH and HES expression was assessed by immunohistochemistry and Western blot.

Results

Ten eligible patients were enrolled (median age 8.8 years; range 3.1–19.2) with diagnoses of brain stem glioma (n = 3), ependymoma (n = 2), anaplastic astrocytoma (n = 1), choroid plexus carcinoma (n = 2), medulloblastoma (n = 1), and primitive neuroectodermal tumor (n = 1). Nine were evaluable for toxicity. One DLT of fatigue occurred in the six evaluable patients enrolled at 1000 mg/m2/dose. No DLTs were experienced by three patients treated at 1400 mg/m2/dose. Non-dose-limiting grade 3 toxicities included lymphopenia, neutropenia, and anemia. Median number of treatment courses was 2 (range 1–10). Two patients continued on therapy for at least 6 months. The median (range) Cmax of MK-0752 was 88.2 μg/mL (40.6 to 109 μg/mL) and 60.3 μg/mL (59.2 to 91.9 μg/mL) in patients receiving 1000 and 1400 mg/m2/week, respectively. NOTCH expression was decreased in six of seven patients for whom tissue was available at 24 h post-MK-0752.

Conclusion

MK-0752 is well tolerated and exhibits target inhibition at 1000 and 1400 mg/m2/week in children with recurrent CNS malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miele L (2006) Notch signaling. Clin Cancer Res 12:1074–1079. doi:10.1158/1078-0432.CCR-05-2570

    Article  CAS  PubMed  Google Scholar 

  2. Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106. doi:10.1038/nrclinonc.2010.196

    Article  CAS  PubMed  Google Scholar 

  3. Lu P, Bai X-C, Ma D et al (2014) Three-dimensional structure of human γ-secretase. Nature 512:166–170. doi:10.1038/nature13567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Tonon G, Modi S, Wu L et al (2003) t (11;19) (q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet 33:208–213. doi:10.1038/ng1083

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, McGee J, Chen X et al (2014) Identification of druggable cancer driver genes amplified across TCGA datasets. PLoS One 9:e98293. doi:10.1371/journal.pone.0098293

    Article  PubMed Central  PubMed  Google Scholar 

  6. Fan X, Mikolaenko I, Elhassan I et al (2004) Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 64:7787–7793. doi:10.1158/0008-5472.CAN-04-1446

    Article  CAS  PubMed  Google Scholar 

  7. Hatakeyama J, Sakamoto S, Kageyama R (2006) Hes1 and Hes5 regulate the development of the cranial and spinal nerve systems. Dev Neurosci 28:92–101. doi:10.1159/000090756

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Hibbs MA, Gard AL et al (2012) Genome-wide analysis of N1ICD/RBPJ targets in vivo reveals direct transcriptional regulation of Wnt, SHH, and hippo pathway effectors by Notch1. Stem Cells 30:741–752. doi:10.1002/stem.1030

    Article  PubMed Central  PubMed  Google Scholar 

  9. Cuevas IC, Slocum AL, Jun P et al (2005) Meningioma transcript profiles reveal deregulated Notch signaling pathway. Cancer Res 65:5070–5075. doi:10.1158/0008-5472.CAN-05-0240

    Article  CAS  PubMed  Google Scholar 

  10. Beschorner R, Waidelich J, Trautmann K et al (2013) Notch receptors in human choroid plexus tumors. Histol Histopathol 28:1055–1063

    CAS  PubMed  Google Scholar 

  11. Fiaschetti G, Schroeder C, Castelletti D et al (2014) NOTCH ligands JAG1 and JAG2 as critical pro-survival factors in childhood medulloblastoma. Acta Neuropathol Commun 2:39. doi:10.1186/2051-5960-2-39

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kristoffersen K, Villingshøj M, Poulsen HS, Stockhausen M-T (2013) Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures. Cancer Biol Ther 14:625–637. doi:10.4161/cbt.24595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Taylor MD, Poppleton H, Fuller C et al (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335. doi:10.1016/j.ccr.2005.09.001

    Article  CAS  PubMed  Google Scholar 

  14. Jones DTW, Jäger N, Kool M et al (2012) Dissecting the genomic complexity underlying medulloblastoma. Nature 488:100–105. doi:10.1038/nature11284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Natarajan S, Li Y, Miller EE et al (2013) Notch1-induced brain tumor models the sonic hedgehog subgroup of human medulloblastoma. Cancer Res 73:5381–5390. doi:10.1158/0008-5472.CAN-13-0033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ignatova TN, Kukekov VG, Laywell ED et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206. doi:10.1002/glia.10094

    Article  PubMed  Google Scholar 

  17. Fan X, Khaki L, Zhu TS et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16. doi:10.1002/stem.254

    CAS  PubMed Central  PubMed  Google Scholar 

  18. LoRusso P, Demuth T (2009) E H Phase I study of the gamma secretase inhibitor MK-0752 in patients with metastatic breast and other advanced solid tumors. 100th Annual Meeting of the American Association for Cancer Research, Denver, CO, April 18–22 (abstr 3605)

  19. Krop I, Demuth T, Guthrie T et al (2012) Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J Clin Oncol 30:2307–2313. doi:10.1200/JCO.2011.39.1540

    Article  CAS  PubMed  Google Scholar 

  20. Schott AF, Landis MD, Dontu G et al (2013) Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res 19:1512–1524. doi:10.1158/1078-0432.CCR-11-3326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fouladi M, Stewart CF, Olson J et al (2011) Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol 29:3529–3534. doi:10.1200/JCO.2011.35.7806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Skolnik JM, Barrett JS, Jayaraman B et al (2008) Shortening the timeline of pediatric phase I trials: the rolling six design. J Clin Oncol 26:190–195. doi:10.1200/JCO.2007.12.7712

    Article  PubMed  Google Scholar 

  23. Bai F, Tagen M, Colotta C et al (2010) Determination of the gamma-secretase inhibitor MK-0752 in human plasma by online extraction and electrospray tandem mass spectrometry (HTLC-ESI-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 878:2348–2352. doi:10.1016/j.jchromb.2010.07.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Real PJ, Tosello V, Palomero T et al (2009) Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 15:50–58. doi:10.1038/nm.1900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pugh TJ, Weeraratne SD, Archer TC et al (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488:106–110. doi:10.1038/nature11329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Blackman SC, Podtelezhnikov A, Railkar RA Notch pathway inhibition with MK-0752 leads to dose- and time-dependent transcriptional alterations in proliferation, PI3K, and Wnt pathway genes in plucked human hair follicles. Proc Am Assoc for Cancer Res 51:(abst 26)

  27. Balint K, Xiao M, Pinnix CC et al (2005) Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest 115:3166–3176. doi:10.1172/JCI25001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wang T, Holt CM, Xu C et al (2007) Notch3 activation modulates cell growth behaviour and cross-talk to Wnt/TCF signalling pathway. Cell Signal 19:2458–2467. doi:10.1016/j.cellsig.2007.07.019

    Article  CAS  PubMed  Google Scholar 

  29. Brechbiel J, Miller-Moslin K, Adjei AA (2014) Crosstalk between hedgehog and other signaling pathways as a basis for combination therapies in cancer. Cancer Treat Rev 40:750–759. doi:10.1016/j.ctrv.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  30. Tremblay I, Paré E, Arsenault D et al (2013) The MEK/ERK pathway promotes NOTCH signalling in pancreatic cancer cells. PLoS One 8:e85502. doi:10.1371/journal.pone.0085502

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hales EC, Taub JW, Matherly LH (2014) New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal 26:149–161. doi:10.1016/j.cellsig.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  32. Zhao N, Guo Y, Zhang M et al (2010) Akt-mTOR signaling is involved in Notch-1-mediated glioma cell survival and proliferation. Oncol Rep 23:1443–1447

    Article  CAS  PubMed  Google Scholar 

  33. Jin R, Nakada M, Teng L et al (2013) Combination therapy using Notch and Akt inhibitors is effective for suppressing invasion but not proliferation in glioma cells. Neurosci Lett 534:316–321. doi:10.1016/j.neulet.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  34. Fouladi M, Perentesis JP, Phillips CL et al (2014) A phase I trial of MK-2206 in children with refractory malignancies: a Children’s Oncology Group study. Pediatr Blood Cancer 61:1246–1251. doi:10.1002/pbc.25023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Fouladi M, Laningham F, Wu J et al (2007) Phase I study of everolimus in pediatric patients with refractory solid tumors. J Clin Oncol 25:4806–4812. doi:10.1200/JCO.2007.11.4017

    Article  CAS  PubMed  Google Scholar 

  36. Gu F, Ma Y, Zhang Z et al (2010) Expression of Stat3 and Notch1 is associated with cisplatin resistance in head and neck squamous cell carcinoma. Oncol Rep 23:671–676

    CAS  PubMed  Google Scholar 

  37. McAuliffe SM, Morgan SL, Wyant GA et al (2012) Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc Natl Acad Sci U S A 109:E2939–48. doi:10.1073/pnas.1206400109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Groeneweg JW, DiGloria CM, Yuan J et al (2014) Inhibition of notch signaling in combination with Paclitaxel reduces platinum-resistant ovarian tumor growth. Front Oncol 4:171. doi:10.3389/fonc.2014.00171

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hiddingh L, Tannous BA, Teng J et al (2014) EFEMP1 induces γ-secretase/Notch-mediated temozolomide resistance in glioblastoma. Oncotarget 5:363–374

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded in part by the National Institutes of Health Grant No. U01 CA81457 for the Pediatric Brain Tumor Consortium and by the American Lebanese Syrian Associated Charities. Maryam Fouladi received research funding by Merck.

Compliance with ethical standards

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsey M. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, L.M., Fouladi, M., Olson, J. et al. Phase I trial of weekly MK-0752 in children with refractory central nervous system malignancies: a pediatric brain tumor consortium study. Childs Nerv Syst 31, 1283–1289 (2015). https://doi.org/10.1007/s00381-015-2725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-015-2725-3

Keywords

Navigation