Skip to main content

Advertisement

Log in

Surgical treatment of complex spinal cord lipomas

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

This paper shows the long-term benefits of total/near-total resection of complex spinal cord lipomas and meticulous reconstruction of the neural placode, and specifically, its advantage over partial resection, and over non-surgical treatment for the subset of children with asymptomatic virgin lipomas.

Methods

The technique of total resection and placode reconstruction, together with technical nuances, are described in detail. We added 77 patients with complex lipomas to our original lipoma series published in 2009 and 2010, to a total of 315 patients who had had total or near-total resection and followed for a span of 20 years. Long-term outcome is measured by overall progression-free survival (PFS) with the Kaplan–Meier analysis, and by subgroup Cox proportional recurrence hazard analysis for the influence on outcome of 4 predictor variables of lipoma type, presence of symptoms, prior surgery, and post-operative cord–sac ratio. These results are compared to an age-matched, lesion-matched series of 116 patients who underwent partial lipoma resection over 11 years. The results for total resection is also compared to two large published series of asymptomatic lipomas followed without surgery over 9 to 10 years, to determine whether prophylactic total resection confers better long-term protection over conservative treatment for children with asymptomatic lipomas..

Results

The PFS after total resection for all lipoma types and clinical subgroups is 88.1 % over 20 years versus 34.6 % for partial resection at 10.5 years (p < 0.0001). Culling only the asymptomatic patients with virgin (previously unoperated) lipomas, the PFS for prophylactic total resection for this subgroup rose to 98.8 % over 20 years, versus 67 % at 9 years for one group of non-surgical treatment and 60 % at 10 years for another group of conservative treatment. Our own as well as other published results of partial resection also compare poorly to non-surgical treatment for the subset of asymptomatic virgin lipomas. Multivariate subgroup analyses show that cord–sac ratio is the only independent variable that predicts outcome, with a 96.9 % PFS for ratio <30 % (loosest sac), 86.2 % for ratio between 30 and 50 %, and 78.3 % for ratio >50 % (tightest sac), and a threefold increase in recurrence hazard for high ratios (p = 0.0009). Pre-operative patient profiling using multiple correspondence analysis shows the ideal patient for total resection is a child less than 2 years old with a virgin asymptomatic lipoma, who, with a PFS of 99.2 %, is virtually cured by total resection.

Conclusion

Total/near-total resection of complex lipomas and complete reconstruction of the neural placode achieves far better long-term protection against symptomatic recurrence than partial resection for all lesions; and for the subset of asymptomatic virgin lipomas, also better than non-surgical treatment. Partial resection in many cases produces worse outcome than conservative treatment for asymptomatic lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

Notes

  1. It should be mentioned that the term neural placode in lipoma is borrowed from the familiar essential element of an open neural tube defect or ONTD, to emphasise its equivalent “neural” nature once purified of fat. The synonymous usage of the term in lipoma and ONTD is logical if one ponders the embryogenesis of the two entities (see below): the “placode” in each case represents the original embryonic neural plate blighted in its final completing process, one invaded by paraxial mesenchyme, the other thwarted in its midline dorsal fusion.

References

  1. Arai H, Sato K, Wachi A (1992) Surgical management in 81 patients with congenital intraspinal lipoma. Child's Nervous System 8:171

    Google Scholar 

  2. Atala H, Sato K, Wachi A (1992) Bladder functional changes resulting from lipomyelomeningocele repair. J Urol 148:592–595

    PubMed  CAS  Google Scholar 

  3. Barson AJ (1970) The vertebral level of termination of the spinal cord during normal and abnormal development. J Anat 106:489–497

    PubMed  CAS  Google Scholar 

  4. Bruce DA, Schut L (1979) Spinal lipomas in infancy and childhood. Child's Brain 5:192–203

    PubMed  CAS  Google Scholar 

  5. Brunelle F, Sebag G, Baraton J, Carteret M, Martinat P, Pierre-Kahn A (1996) Lumbar spinal cord motion measurement with phase-contrast MR imaging in normal children and in children with spinal lipomas. Pediatr Radiol 26(4):265–270

    Article  PubMed  CAS  Google Scholar 

  6. Byrne RW, Hayes EA, Georg TM, McLone DG (1995) Operative resection of 100 spinal lipomas in infants less than 1 year of age. Pediatr Neurosurg 23:182–187

    Article  PubMed  CAS  Google Scholar 

  7. Caldarelli M, McLone DG, Colins JA, Suwa J, Knepper PA (1985) Vitamin A induced neural tube defects in a mouse. Concepts in Pediatric Neurosurgery 6:161–171

    Google Scholar 

  8. Chapman PH (1982) Congenital intraspinal lipomas. Anatomic considerations and surgical treatment. Child's Brain 9:37–47

    PubMed  CAS  Google Scholar 

  9. Chapman PH (2004) Comments in: Kulkarni HV, Pierre-Kahn A, Zerah M: Conservative management of asymptomatic spinal lipomas of the conus. Neurosurgery 54:868–875

    Article  Google Scholar 

  10. Chapman PH, Davis KR (1993) Surgical treatment of spinal lipomas in childhood. Pediatric Neursurgery 19:267–275

    Article  CAS  Google Scholar 

  11. Cochrane DD, Finley C, Kestle J, Steinbok P (2000) The patterns of late deterioration in patients with transitional lipomyelomeningocele. Eur J Pediatr Surg 10(suppl 1):13–17

    Article  PubMed  Google Scholar 

  12. Colak A, Pollack IF, Albright AL (1998) Recurrent tethering: a common long-term problem after lipomyelomeningocele repair. Pediatr Neurosurg 29:184–190

    Article  PubMed  CAS  Google Scholar 

  13. Cornette L, Verpoorten C, Lagae L, Plets C, Van Calenbergh F, Casaer P (1998) Closed spinal dysraphism: a review on diagnosis and treatment in infancy. Eur J Paediatr Neurol 2:179–185

    Article  PubMed  CAS  Google Scholar 

  14. Detwiler SR, Hotzer H (1954) The inductive and formative influence of the spinal cord upon the vertebral column. Bull Hosp Jt Dis Orthop Inst 15:114–123

    CAS  Google Scholar 

  15. Dias M, Pang D (1994) Human neural embryogenesis: a description of neural morphogenesis and a review of embryonic mechanisms. In: Pang D (ed) Disorders of the pediatric spine. Raven, New York

    Google Scholar 

  16. Dick EA, deBruhn R (2003) Ultrasound of the spinal cord in children: its role. Eur Radiol 13(3):552–562

    PubMed  CAS  Google Scholar 

  17. Dorward NL, Scatliff JH, Hayward RD (2002) Congenital lumbosacral lipomas: pitfalls in analyzing the results of prophylactic surgery. Childs Nerv Syst 18:326–332

    Article  PubMed  Google Scholar 

  18. Hamilton HL, Boyd JD, Mossman HM (1972) Human embryology. Williams & Wilkins, Baltimore

    Google Scholar 

  19. Hoffman HJ, Hendrick EB, Humphreys RP (1976) The tethered spinal cord: Its protean manifestations, diagnosis and surgical correction. Child's Brain 2:145–155

    PubMed  CAS  Google Scholar 

  20. Hoffman HJ, Taecholarn C, Hendrick EB, Humphreys RP (1985) Management of lipomyelomeningoceles. J Neurosurg 62:1–8

    Article  PubMed  CAS  Google Scholar 

  21. James HE, Canty TG (1995) Human tails and associated spinal anomalies. Clin Pediatr (Phila) 34(5):286–288

    Article  CAS  Google Scholar 

  22. James CCM, Lassman LP (1970) Diastematomyelia and the tight filum terminale. J Neurol Sci 10:193–196

    Article  PubMed  CAS  Google Scholar 

  23. James CCM, Williams J, Brock W, Kaplan GW, U HS (1984) Radical removal of lipomas of the conus and cauda equina with laser microsurgery. Neurosurgery 13:340–345

    Article  Google Scholar 

  24. Jones PH, Love JG (1956) Tight filum terminale. Arch Surg 73:556–566

    Article  CAS  Google Scholar 

  25. Kallen B (1968) Early embryogenesis of central nervous system with special reference to closure defects. Dev Med Child Neurol 19(suppl):44–53

    Google Scholar 

  26. Kanev PM, Lemire RJ, Loeser JB, Berger MS (1990) Management and Long-term follow-up review of children with lipomyelomeningocele, 1952–1987. J Neurosurg 74:48–52

    Google Scholar 

  27. Koyanagi I, Iwasaki Y, Hida K, Abe H, Isu T, Akino M (1997) Surgical treatment supposed natural history of the tethered cord with occult spinal dysraphism. Childs Nerv Syst 13:268–274

    Article  PubMed  CAS  Google Scholar 

  28. Kulkarni HV, Pierre-Kahn A, Zerah M (2004) Conservative management of asymptomatic spinal lipomas of the conus. Neurosurgery 54:868–875

    Article  PubMed  Google Scholar 

  29. Kunitomo K (1918) The development and reduction of the tail and of the caudal end of the spinal cord. Contributions to Embryology 8:163–198, Carnegie Institute

    Google Scholar 

  30. La Marca F, Grant JA, Tomita T, McLone DG (1997) Spinal lipomas in children: outcome of 270 procedures. Pediatr Neurosurg 26:8–16

    Article  PubMed  Google Scholar 

  31. Marin-Padilla M (1966) Mesodermal altercations induced by hypervitaminosis A. J Embryol Exp Morph 15:261–269

    PubMed  CAS  Google Scholar 

  32. Marin-Padilla M (1970) Morphogenesis of anencephaly and related malformations. Curr Top Pathol 51:145–174

    Article  Google Scholar 

  33. Marin-Padilla M (1978) Clinical and experimental rachischisis. In: Vinken PS, Bruyn GW (eds) Handbook of clinical neurology. North-Holland, Amsterdam, pp 159–191

    Google Scholar 

  34. Marin-Padilla M (1979) Notochordal-basochondrocranium relationships: abnormalities in experimentally induced axial skeletal (dysraphic) disorders. J Embryol Exp Morph 53:15–38

    PubMed  CAS  Google Scholar 

  35. Marin-Padilla M (1981) Morphogenesis of experimentally induced Arnold–Chiari malformation. J Neurol Sci 50:29–55

    Article  PubMed  CAS  Google Scholar 

  36. Marin-Padilla M (1985) The tethered cord syndrome: developmental considerations. In: Holtzmann RNN, Stein BM (eds) The tethered spinal cord. Thieme, New York, pp 3–13

    Google Scholar 

  37. McGuire EJ (1986) The innervation and function of the lower urinary tract. J Neurosurg 65:278–285

    Article  PubMed  CAS  Google Scholar 

  38. McGuire EJ, Woodside JR, Borden TA, Weiss RM (1981) Prognostic value of urodynamic testing in myelodysplastic patients. J Urol 126:205–209

    PubMed  CAS  Google Scholar 

  39. McLone DG, Knepper PA (1986) Role of complex carbohydrates and neurulation. Pediatr Neurosci 1:2–9

    Google Scholar 

  40. McLone DG, Mutluer S, Naidich TP (1982) Lipomeningoceles of the conus medullaris. In: Karger S (ed) Concepts in pediatric neurosurgery. Karger, Basel, Switzerland, pp 171–177

    Google Scholar 

  41. McLone DG, Naidich TP (1985) Spinal dysraphism: experimental and clinical. In: Holtzman RN, Stein BM (eds) The tethered spinal cord. Thieme, New York

    Google Scholar 

  42. McLone DG, Naidich TP (1986) Laser resection of fifty spinal lipomas. Neurosurgery 18:611–615

    Article  PubMed  CAS  Google Scholar 

  43. McLone DG, Suwa J, Collins JA, Poznaski S, Knepper PA (1983) Neurulation: biochemical and morphological studies on primary and secondary neural tube defects. Concepts in Pediatric Neurosurgery 4:15–29

    Google Scholar 

  44. Morris-Kay GM, Crutch B (1982) Culture of rat embryos with Β-d-xyloside: evidence of a role for proteoglycans in neurulation. J Anat 134:491–506

    Google Scholar 

  45. Muller F, O'Rahilly R (1974) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at Stage 12. Anatomy and Embryology (Berlin) 176:413–430

    Article  Google Scholar 

  46. O'Rahilly R, Meyer DB (1973) The timing and sequence of events in the development of the human vertebral column during the embryonic period proper. Anat Embryol (Berl) 157:167–176

    Article  Google Scholar 

  47. O'Shea KS, Kaufmann MH (1980) Phospholipase C-induced neural tube defects in the mouse embryo. Experientia 36:1217–1219

    Article  PubMed  Google Scholar 

  48. Pang D (1983) Use of an anal sphincter pressure monitor during operations on the sacral spinal cord and nerve roots. Neurosurgery 13:562–568

    Article  PubMed  CAS  Google Scholar 

  49. Pang D (1986) Tethered cord syndrome. In: Hoffman HJ (ed) Advances in pediatric neurosurgery. Hanley and Belfus, Philadelphia, pp 45–79

    Google Scholar 

  50. Pang D (1995) Spinal cord lipomas. In: Pang D (ed) Disorders of the pediatric spine. Raven, New York, pp 175–201

    Google Scholar 

  51. Pang D (2002) Spinal Cord Lipoma. In: Batjer H, Loftus C (eds) Textbook of Neurological Surgery, . Lippincott, Williams and Wilkins, New Jersey

    Google Scholar 

  52. Pang D (2010) Electrophysiological monitoring for tethered cord surgery. In: Yamada S (ed) Tethered cord syndrome. Thieme Medical Publishers, New York, pp 199–209

    Google Scholar 

  53. Pang D (2010) Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst 26:411–412

    Article  PubMed  Google Scholar 

  54. Pang D (2012) Commentary to the article: asymptomatic lumbosacral lipomas— a natural history study; by Wykes, V., Desai, D. and Thompson, D.N.P. Childs Nerv Syst 28:1741–1742

    Article  PubMed  Google Scholar 

  55. Pang D, Wilberger JE (1982) Tethered cord syndrome in adults. J Neurosurg 57:32–47

    Article  PubMed  CAS  Google Scholar 

  56. Pang D, Zovickian J, Moes GS (2011) Retained medullary cord in humans—late arrest of secondary neurulation. Neurosurgery 68:1500–1519

    Article  PubMed  Google Scholar 

  57. Pang D, Zovickian JG, Ovieda A (2009) Long term outcome of total and near total resection of spinal cord lipomas and radical reconstruction of the neural placode part I: surgical technique. Neurosurgery 65:511–529

    Article  PubMed  Google Scholar 

  58. Pang D, Zovickian JG, Oviedo A (2010) Long term outcome of total and near total resection of spinal cord lipomas and radical reconstruction of neural placode part II: outcome analysis and preoperative profiling. Neurosurgery 66(2):253–273

    Article  PubMed  Google Scholar 

  59. Pierre-Kahn A, Lacombe J, Pichon J, Giudicelli Y, Renier D, Sainte-Rosse C, Perrigot M, Hirsch J (1986) Intraspinal lipomas with spina bifida: prognosis and treatment in 73 cases. J Neurosurg 65:756–761

    Article  PubMed  CAS  Google Scholar 

  60. Pierre-Kahn A, Zerah M, Renier D, Canalli G, Sainte-Rose C, Lellough-Tubiana A, Brunelle F, Le Merrer M, Giudicelli Y, Pichon J, Kleinknecht B, Nataf F (1997) Congenital lumbosacral lipomas. Childs Nerv Syst 13:298–334

    Article  PubMed  CAS  Google Scholar 

  61. Sathi S, Madsen JR, Bauer S, Scott RM (1993) Effect of surgical repair on neurologic function in infants with lipomeningocele. Pediatr Neurosurg 19:256–259

    Article  PubMed  CAS  Google Scholar 

  62. Schoenwolf GC (1979) Histological and ultrastructural observations of tail bud formation in the chick embryo. Anat Rec 193:131–148

    Article  PubMed  CAS  Google Scholar 

  63. Schoenwolf GC, Nichols DH (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169:361–376

    Article  PubMed  CAS  Google Scholar 

  64. Schut L, Bruce DA, Sutton LN (1983) The management of the child with lipomyelomeningocele. Child Neurosurgery 30:440–476

    Google Scholar 

  65. Stolke D, Zumkeller M, Seifert V (1988) Intraspinal lipomas in infancy and childhood causing a tethered cord syndrome. Neurosurgery Review 11:59–65

    Article  CAS  Google Scholar 

  66. Streeter GL (1919) Factors involved in the formation of the filum terminalis. Am J Anat 25:1–12

    Article  Google Scholar 

  67. Sutton LN (1995) Lipomyelomeningocele. Neurosurg Clin N Am 6:325–338

    PubMed  CAS  Google Scholar 

  68. Talwalker VC, Datsur DK (1974) Ectopic spinal cord myelomeningocele with tethering: a clinicopathological entity. Dev Med Child Neurol 16(32):159–160

    Google Scholar 

  69. Toole BP (1981) Glycosaminoglycans in morphogenesis. In: Hay E (ed) Cell biology of extracellular matrix. Plenum, New York, pp 229–294

    Google Scholar 

  70. Wykes V, Desai D, Thompson DNP (2012) Asymptomatic lumbosacral lipomas—a natural history study. Childs Nerv Syst 28:1731–1739

    Article  PubMed  Google Scholar 

  71. Xenos C, Sgouros S, Walsh R, Hockley A (2000) Spinal lipomas in children. Pediatr Neurosurg 32:295–307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachling Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, D., Zovickian, J., Wong, ST. et al. Surgical treatment of complex spinal cord lipomas. Childs Nerv Syst 29, 1485–1513 (2013). https://doi.org/10.1007/s00381-013-2187-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-013-2187-4

Keywords

Navigation