Skip to main content

Advertisement

Log in

Cranial sutures: a multidisciplinary review

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Progress in cranial suture research is shaping our current understanding of the topic; however, emphasis has been placed on individual contributing components rather than the cranial sutural system as a whole. Improving our holistic view helps further guide clinicians who treat cranial sutural abnormalities as well as researchers who study them.

Materials and methods

Information from anatomy, anthropology, surgery, and computed modeling was integrated to provide a perspective to interpret suture formation and variability within the cranial functional and structural system.

Results

Evidence from experimental settings, simulations, and evolution suggest a multifactorial morphogenetic process associated with functions and morphology of the sutures. Despite molecular influences, the biomechanical cranial environment has a main role in both the ontogenetic and phylogenetic suture dynamics.

Conclusions

Furthering our holistic understanding of the intricate cranial sutural system promises to expand our knowledge and enhance our ability to treat associated anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dimopoulos VG, Kapsalakis IZ, Fountas KN (2007) Skull morphology and its neurosurgical implications in the hippocratic era. Neurosurg Focus 23:E10

    PubMed  Google Scholar 

  2. Greenblatt S (1997) The historiography of neurosurgery: Organizing themes and methodological issues. In: T Dagi, M Epstein (eds) A history of neurosurgery: in its scientific and professional contexts. Thieme Medical Publishers, U.S.A., p 3.

  3. The Canon on Medicine, United States National Library of Medicine

  4. McVaugh M (2006) The rational surgery of the middle ages. Sismel, Florence

  5. Di Ieva A, Tschabitscher M, Prada F et al (2007) The neuroanatomical plates of Guido da Vigevano. Neurosurg Focus 23:E15

    PubMed  Google Scholar 

  6. Di Ieva A, Gaetani P, Matula C et al (2011) Berengario da Carpi: a pioneer in neurotraumatology. J Neurosurg 114:1461–1470

    PubMed  Google Scholar 

  7. Lind R (1975) Studies in Pre-Vesalian Anatomy: Biography, Translations, Documents. American Philosophical Society, Philadelphia

    Google Scholar 

  8. Frassanito P, Di Rocco C (2011) Depicting cranial sutures: a travel into the history. Childs Nerv Syst 27:1181–1183

    PubMed  Google Scholar 

  9. Slater BJ, Kwan MD, Gupta DM et al (2008) Dissecting the influence of regional dura mater on cranial suture biology. Plast Reconstr Surg 122:77–84

    PubMed  CAS  Google Scholar 

  10. Raam MS, Solomon BD, Shalev SA et al (2010) Holoprosencephaly and craniosynostosis: a report of two siblings and review of the literature. Am J Med Genet C Semin Med Genet 154C:176–182

    PubMed  Google Scholar 

  11. Tubbs RS, Bosmia AN, Cohen-Gadol AA (2012) The human calvaria: a review of embryology, anatomy, pathology, and molecular development. Childs Nerv Syst 28:23–31

    PubMed  Google Scholar 

  12. Ito Y, Yeo JY, Chytil A et al (2003) Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 130:5269–5280

    PubMed  CAS  Google Scholar 

  13. Lana-Elola E, Rice R, Grigoriadis AE et al (2007) Cell fate specification during calvarial bone and suture development. Dev Biol 311:335–346

    PubMed  CAS  Google Scholar 

  14. Chai Y, Jiang X, Ito Y et al (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    PubMed  CAS  Google Scholar 

  15. Jiang X, Rowitch DH, Soriano P et al (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    PubMed  CAS  Google Scholar 

  16. Jiang X, Iseki S, Maxson RE et al (2002) Tissue origins and interactions in the mammalian skull vault. Dev Biol 241:106–116

    PubMed  CAS  Google Scholar 

  17. Öcal E, Sun PP, Persing JA (2007) Craniosynostosis. In: Albright AL, Adelson PD, Pollack IF (eds) Principles and practice of pediatric neurosurgery, 2nd edn. Thieme, New York, pp 265–288

    Google Scholar 

  18. Morriss-Kay GM, Wilkie AO (2005) Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat 207:637–653

    PubMed  Google Scholar 

  19. Tholpady SS, Freyman TF, Chachra D et al (2007) Tensional forces influence gene expression and sutural state of rat calvariae in vitro. Plast Reconstr Surg 120:601–11, discussion 612-3

    PubMed  CAS  Google Scholar 

  20. Ogle RC, Tholpady SS, McGlynn KA et al (2004) Regulation of cranial suture morphogenesis. Cells Tissues Organs 176:54–66

    PubMed  Google Scholar 

  21. Smith DW, Tondury G (1978) Origin of the calvaria and its sutures. Am J Dis Child 132:662–666

    PubMed  CAS  Google Scholar 

  22. Opperman LA (2000) Cranial sutures as intramembranous bone growth sites. Dev Dyn 219:472–485

    PubMed  CAS  Google Scholar 

  23. Drake DB, Persing JA, Berman DE et al (1993) Calvarial deformity regeneration following subtotal craniectomy for craniosynostosis: a case report and theoretical implications. J Craniofac Surg 4:85–9, discussion 90

    PubMed  CAS  Google Scholar 

  24. Hobar PC, Schreiber JS, McCarthy JG et al (1993) The role of the dura in cranial bone regeneration in the immature animal. Plast Reconstr Surg 92:405–410

    PubMed  CAS  Google Scholar 

  25. Hobar PC, Masson JA, Wilson R et al (1996) The importance of the dura in craniofacial surgery. Plast Reconstr Surg 98:217–225

    PubMed  CAS  Google Scholar 

  26. Bradley JP, Levine JP, Blewett C et al (1996) Studies in cranial suture biology: in vitro cranial suture fusion. Cleft Palate Craniofac J 33:150–156

    PubMed  CAS  Google Scholar 

  27. Opperman LA, Sweeney TM, Redmon J et al (1993) Tissue interactions with underlying dura mater inhibit osseous obliteration of developing cranial sutures. Dev Dyn 198:312–322

    PubMed  CAS  Google Scholar 

  28. Opperman LA, Persing JA, Sheen R et al (1994) In the absence of periosteum, transplanted fetal and neonatal rat coronal sutures resist osseous obliteration. J Craniofac Surg 5:327–332

    PubMed  CAS  Google Scholar 

  29. Levine JP, Bradley JP, Roth DA et al (1998) Studies in cranial suture biology: regional dura mater determines overlying suture biology. Plast Reconstr Surg 101:1441–1447

    PubMed  CAS  Google Scholar 

  30. Chandran S, Lim MK, Yu VY (2000) Fetal acalvaria with amniotic band syndrome. Arch Dis Child Fetal Neonatal Ed 82:F11–3

    PubMed  CAS  Google Scholar 

  31. Bialek P, Kern B, Yang X et al (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6:423–435

    PubMed  CAS  Google Scholar 

  32. Chen L, Li D, Li C et al (2003) A Ser252Trp [corrected] substitution in mouse fibroblast growth factor receptor 2 (Fgfr2) results in craniosynostosis. Bone 33:169–178

    PubMed  CAS  Google Scholar 

  33. Lee MS, Lowe GN, Strong DD et al (1999) TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage. J Cell Biochem 75:566–577

    PubMed  CAS  Google Scholar 

  34. Ting MC, Wu NL, Roybal PG et al (2009) EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development 136:855–864

    PubMed  CAS  Google Scholar 

  35. Yousfi M, Lasmoles F, El Ghouzzi V et al (2002) Twist haploinsufficiency in saethre-chotzen syndrome induces calvarial osteoblast apoptosis due to increased TNFalpha expression and caspase-2 activation. Hum Mol Genet 11:359–369

    PubMed  CAS  Google Scholar 

  36. Yousfi M, Lasmoles F, Lomri A et al (2001) Increased bone formation and decreased osteocalcin expression induced by reduced twist dosage in saethre-chotzen syndrome. J Clin Invest 107:1153–1161

    PubMed  CAS  Google Scholar 

  37. Hajihosseini MK (2008) Fibroblast growth factor signaling in cranial suture development and pathogenesis. Front Oral Biol 12:160–177

    PubMed  Google Scholar 

  38. Loeys BL, Chen J, Neptune ER et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281

    PubMed  CAS  Google Scholar 

  39. Klein R (2004) Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol 16:580–589

    PubMed  CAS  Google Scholar 

  40. Kullander K, Klein R (2002) Mechanisms and functions of eph and ephrin signalling. Nat Rev Mol Cell Biol 3:475–486

    PubMed  CAS  Google Scholar 

  41. Wilkinson DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2:155–164

    PubMed  CAS  Google Scholar 

  42. Jabs EW, Muller U, Li X et al (1993) A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75:443–450

    PubMed  CAS  Google Scholar 

  43. Kim HJ, Rice DP, Kettunen PJ et al (1998) FGF-, BMP- and shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 125:1241–1251

    PubMed  CAS  Google Scholar 

  44. Merrill AE, Bochukova EG, Brugger SM et al (2006) Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-eph signaling in the pathogenesis of craniosynostosis. Hum Mol Genet 15:1319–1328

    PubMed  CAS  Google Scholar 

  45. Podesta PG, Negretto A, Vecchi De J, Villigran R, Montaldo A, Benedek P, Hornblas JJ (1985) Management of a complex case of Crouzons syndrome. In: Marchac D (ed) Craniofacial surgery. Springer, Berlin Heidelberg New York, pp 160–162

    Google Scholar 

  46. Shillito J Jr (1992) A plea for early operation for craniosynostosis. Surg Neurol 37:182–188

    PubMed  Google Scholar 

  47. McComb JG (1981) Treatment of functional lambdoid synostosis. Neurosurg Clin N Am 2:665–672

    Google Scholar 

  48. Matson DD (1969) Neurosurgery of Infancy and Childhood (2nd ed). Charles C Thomas Publisher, Springfield

    Google Scholar 

  49. Epstein N, Epstein F, Newman G (1982) Total vertex craniectomy for the treatment of scaphocephaly. Childs Brain 9:309–316

    PubMed  CAS  Google Scholar 

  50. Thaller SR, Hoyt J, Boggan J (1992) Surgical correction of unilateral lambdoid synostosis: occipital rotation flap. J Craniofac Surg 3:12–7, discussion 18-9

    PubMed  CAS  Google Scholar 

  51. Vander Kolk CA, Carson BS, Robertson BC et al (1993) The occipital bar and internal osteotomies in the treatment of lambdoidal synostosis. J Craniofac Surg 4:112–118

    PubMed  CAS  Google Scholar 

  52. Pollack IF, Losken HW, Fasick P (1997) Diagnosis and management of posterior plagiocephaly. Pediatrics 99:180–185

    PubMed  CAS  Google Scholar 

  53. Marchac D, Renier D (1982) Craniofacial surgery for craniosynostosis. Little, Brown, Boston, Massachusetts

  54. Jimenez DF, Barone CM (1998) Endoscopic craniectomy for early surgical correction of sagittal craniosynostosis. J Neurosurg 88:77–81

    PubMed  CAS  Google Scholar 

  55. Jimenez DF, Barone CM, Cartwright CC et al (2002) Early management of craniosynostosis using endoscopic-assisted strip craniectomies and cranial orthotic molding therapy. Pediatrics 110:97–104

    PubMed  Google Scholar 

  56. Barone CM, Jimenez DF (2004) Endoscopic approach to coronal craniosynostosis. Clin Plast Surg 31:415–22, vi

    PubMed  Google Scholar 

  57. Murad GJ, Clayman M, Seagle MB et al (2005) Endoscopic-assisted repair of craniosynostosis. Neurosurg Focus 19:E6

    PubMed  Google Scholar 

  58. Hinojosa J, Esparza J, Munoz J (2007) Endoscopic-assisted osteotomies from the treatment of craniosysnostis. Childs Nerv Syst 23:1421–1430

    PubMed  CAS  Google Scholar 

  59. Jimenez DF, Barone CM (2010) Multiple-suture nonsyndromic craniosynostosis: early and effective management using endoscopic techniques. J Neurosurg Pediatr 5:223–231

    PubMed  Google Scholar 

  60. Hanihara T, Ishida H (2001) Os incae: variation in frequency in major human population groups. J Anat 198:137–152

    PubMed  CAS  Google Scholar 

  61. Hauser G, De Stefano G (1989) Epigenetic variants of the human skull. Schweizerbart, Stuttgart

    Google Scholar 

  62. Wang Q, Opperman LA, Havill LM et al (2006) Inheritance of sutural pattern at the pterion in rhesus monkey skulls. Anat Rec A Discov Mol Cell Evol Biol 288:1042–1049

    PubMed  Google Scholar 

  63. Meindl RS, Lovejoy CO (1985) Ectocranial suture closure: a revised method for the determination of skeletal age at death based on the lateral-anterior sutures. Am J Phys Anthropol 68:57–66

    PubMed  CAS  Google Scholar 

  64. Krogman WM, Iscan MY (1986) The human skeleton in forensic medicine (2nd edn). Charles C Thomas Publishers, Springfield

    Google Scholar 

  65. Mann RW, Symes SA, Bass WM (1987) Maxillary suture obliteration: aging the human skeleton based on intact or fragmentary maxilla. J Forensic Sci 32:148–157

    PubMed  CAS  Google Scholar 

  66. Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains: Proceedings of a Seminar at the Field Museum of Natural History. Arkansas Archaeological Survey Press, Fayetteville

    Google Scholar 

  67. Enlow DH (1966) A comparative study of facial growth in Homo and Macaca. Am J Phys Anthropol 24:293–308

    PubMed  CAS  Google Scholar 

  68. Duterloo HS, Enlow DH (1970) A comparative study of cranial growth in Homo and Macaca. Am J Anat 127:357–368

    PubMed  CAS  Google Scholar 

  69. Collins HB (1925) The pterion in primates. Am J Phys Anthropol 8:261–274

    Google Scholar 

  70. Ashley-Montagu MG (1933) The anthropological significance of the pterion in the primates. Am J Phys Anthropol 18:159–336

    Google Scholar 

  71. Bruner E, Mantini S, Manzi G (2004) A geometric morphometric approach to airorhynchy and functional cranial morphology in Alouatta (Atelidae, Primates). J Anthropol Sci 82:47–66

    Google Scholar 

  72. Moss ML, Young RW (1960) A functional approach to craniology. Am J Phys Anthropol 18:281–292

    PubMed  CAS  Google Scholar 

  73. Bruner E (2007) Cranial shape and size variation in human evolution: structural and functional perspectives. Childs Nerv Syst 23:1357–1365

    PubMed  Google Scholar 

  74. Zollikofer CP, Weissmann JD (2011) A bidirectional interface growth model for cranial interosseous suture morphogenesis. J Anat 219:100–114

    PubMed  Google Scholar 

  75. Miura T, Perlyn CA, Kinboshi M et al (2009) Mechanism of skull suture maintenance and interdigitation. J Anat 215:642–655

    PubMed  Google Scholar 

  76. Anton SC, Jaslow CR, Swartz SM (1992) Sutural complexity in artificially deformed human (Homo sapiens) crania. J Morphol 214:321–332

    PubMed  CAS  Google Scholar 

  77. White CD (1996) Sutural effects of fronto-occipital cranial modification. Am J Phys Anthropol 100:397–410

    PubMed  CAS  Google Scholar 

  78. O’Loughlin VD (2004) Effects of different kinds of cranial deformation on the incidence of wormian bones. Am J Phys Anthropol 123:146–155

    PubMed  Google Scholar 

  79. Manzi G (2003) “Epigenetic” cranial traits, Neandertals and the origin of Homo sapiens. Riv Antropol 81:57–68

    Google Scholar 

  80. Bruner E (2004) Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47:279–303

    PubMed  Google Scholar 

  81. Sergi S (1934) Ossicini fontanellari della regione del lambda nel cranio di Saccopastore e nei crani neandertaliani. Riv Antropol 30:101–112

    Google Scholar 

  82. Sergi S (1948) L’uomo di Saccopastore. Paleontographia Italica XLII:25–164

    Google Scholar 

  83. Manzi G, Vienna A, Hauser G (1996) Developmental stress and cranial hypostosis by epigenetic trait occurrence and distribution: an exploratory study on the Italian Neandertals. J Hum Evol 30:511–527

    Google Scholar 

  84. Harvati K (2003) Quantitative analysis of Neanderthal temporal bone morphology using three-dimensional geometric morphometrics. Am J Phys Anthropol 120:323–338

    PubMed  Google Scholar 

  85. Terhune CE, Kimbel WH, Lockwood CA (2007) Variation and diversity in Homo erectus: a 3D geometric morphometric analysis of the temporal bone. J Hum Evol 53:41–60

    PubMed  Google Scholar 

  86. Terhune CE, Deane AS (2008) Temporal squama shape in fossil hominins: relationships to cranial shape and a determination of character polarity. Am J Phys Anthropol 137:397–411

    PubMed  Google Scholar 

  87. Falk D, Zollikofer CP, Morimoto N et al (2012) Metopic suture of taung (Australopithecus africanus) and its implications for hominin brain evolution. Proc Natl Acad Sci U S A 109:8467–8470

    PubMed  CAS  Google Scholar 

  88. Kupczik K (2008) Virtual biomechanics: basic concepts and technical aspects of finite element analysis in vertebrate morphology. J Anthropol Sci 86:193–198

    PubMed  Google Scholar 

  89. Herring SW, Teng S (2000) Strain in the braincase and its sutures during function. Am J Phys Anthropol 112:575–593

    PubMed  CAS  Google Scholar 

  90. Rayfield EJ (2005) Using finite-element analysis to investigate suture morphology: a case study using large carnivorous dinosaurs. Anat Rec A Discov Mol Cell Evol Biol 283:349–365

    PubMed  Google Scholar 

  91. Moazen M, Curtis N, O’Higgins P et al (2009) Assessment of the role of sutures in a lizard skull: a computer modelling study. Proc Biol Sci 276:39–46

    PubMed  Google Scholar 

  92. Byron CD (2009) Cranial suture morphology and its relationship to diet in Cebus. J Hum Evol 57:649–655

    PubMed  Google Scholar 

  93. Enlow DH (1990) Facial Growth. WB Saunders Company, Philadelphia

    Google Scholar 

  94. Henderson JH, Longaker MT, Carter DR (2004) Sutural bone deposition rate and strain magnitude during cranial development. Bone 34:271–280

    PubMed  Google Scholar 

  95. Mandelbrot BB (1983) The Fractal Geometry of Nature. Freeman, San Francisco

    Google Scholar 

  96. Gorski AZ, Skrzat J (2006) Error estimation of the fractal dimension measurements of cranial sutures. J Anat 208:353–359

    PubMed  Google Scholar 

  97. Long CA, Long JE (1992) Fractal dimensions of cranial sutures and waveforms. Acta Anat (Basel) 145:201–206

    CAS  Google Scholar 

  98. Lynnerup N, Jacobsen JC (2003) Brief communication: age and fractal dimensions of human sagittal and coronal sutures. Am J Phys Anthropol 121:332–336

    PubMed  Google Scholar 

  99. Tsonis AA, Tsonis PA (1987) Fractals: a new look at biological shape and patterning. Perspect Biol Med 30:355–361

    PubMed  CAS  Google Scholar 

  100. Skrzat J, Walocha J (2003) Fractal dimensions of the sagittal (interparietal) sutures in humans. Folia Morphol (Warsz) 62:119–122

    Google Scholar 

  101. Yu JC, Wright RL, Williamson MA et al (2003) A fractal analysis of human cranial sutures. Cleft Palate Craniofac J 40:409–415

    PubMed  Google Scholar 

  102. Schiwy-Bochat KH (2001) The roughness of the supranasal region—a morphological sex trait. Forensic Sci Int 117:7–13

    PubMed  CAS  Google Scholar 

  103. Monteiro LR, Lessa LG (2000) Comparative analysis of cranial suture complexity in the genus Caiman (Crocodylia, Alligatoridae). Braz J Biol 60:689–694

    PubMed  CAS  Google Scholar 

  104. Hartwig WC (1991) Fractal analysis of sagittal suture morphology. J Morphol 210:289–290

    Google Scholar 

  105. Long CA (1985) Intricate sutures as fractal curves. J Morphol 185:285–295

    Google Scholar 

  106. Barberini F, Bruner E, Cartolari R et al (2008) An unusually-wide human bregmatic wormian bone: anatomy, tomographic description, and possible significance. Surg Radiol Anat 30:683–687

    PubMed  Google Scholar 

  107. Howard TD, Paznekas WA, Green ED et al (1997) Mutations in TWIST, a basic helix-loop-helix transcription factor, in saethre-chotzen syndrome. Nat Genet 15:36–41

    PubMed  Google Scholar 

  108. Sood S, Eldadah ZA, Krause WL et al (1996) Mutation in fibrillin-1 and the marfanoid-craniosynostosis (shprintzen-goldberg) syndrome. Nat Genet 12:209–211

    PubMed  CAS  Google Scholar 

  109. Twigg SR, Kan R, Babbs C et al (2004) Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci U S A 101:8652–8657

    PubMed  CAS  Google Scholar 

  110. Jenkins D, Seelow D, Jehee FS et al (2007) RAB23 mutations in carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet 80:1162–1170

    PubMed  CAS  Google Scholar 

  111. Kamath BM, Stolle C, Bason L et al (2002) Craniosynostosis in alagille syndrome. Am J Med Genet 112:176–180

    PubMed  Google Scholar 

  112. Yen HY, Ting MC, Maxson RE (2010) Jagged1 functions downstream of Twist1 in the specification of the coronal suture and the formation of a boundary between osteogenic and non-osteogenic cells. Dev Biol 347:258–270

    PubMed  CAS  Google Scholar 

  113. Yu HM, Jerchow B, Sheu TJ et al (2005) The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132:1995–2005

    PubMed  CAS  Google Scholar 

  114. Ishii M, Merrill AE, Chan YS et al (2003) Msx2 and twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault. Development 130:6131–6142

    PubMed  CAS  Google Scholar 

  115. Dodig M, Tadic T, Kronenberg MS et al (1999) Ectopic Msx2 overexpression inhibits and Msx2 antisense stimulates calvarial osteoblast differentiation. Dev Biol 209:298–307

    PubMed  CAS  Google Scholar 

  116. Liu YH, Tang Z, Kundu RK et al (1999) Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans. Dev Biol 205:260–274

    PubMed  CAS  Google Scholar 

  117. Maxson R, Ishii M, Merrill A (2003) Murine Homeobox Gene Control of Embryonic Patterning and Organogenesis. Elsevier Science, New York

    Google Scholar 

  118. Li C, Scott DA, Hatch E et al (2007) Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134:167–176

    PubMed  CAS  Google Scholar 

  119. Settle SH Jr, Rountree RB, Sinha A et al (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254:116–130

    PubMed  CAS  Google Scholar 

  120. Moenning A, Jager R, Egert A et al (2009) Sustained platelet-derived growth factor receptor alpha signaling in osteoblasts results in craniosynostosis by overactivating the phospholipase C-gamma pathway. Mol Cell Biol 29:881–891

    PubMed  CAS  Google Scholar 

  121. Zhang X, Kuroda S, Carpenter D et al (2002) Craniosynostosis in transgenic mice overexpressing nell-1. J Clin Invest 110:861–870

    PubMed  CAS  Google Scholar 

  122. Stone DM, Hynes M, Armanini M et al (1996) The tumour-suppressor gene patched encodes a candidate receptor for sonic hedgehog. Nature 384:129–134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Giorgio Manzi, Luca Bondioli, Fabrizio Barberini, Christoph Zollikofer and Takashi Miura for supplying images and drawings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Ieva.

Additional information

Antonio Di Ieva and Emiliano Bruner contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Ieva, A., Bruner, E., Davidson, J. et al. Cranial sutures: a multidisciplinary review. Childs Nerv Syst 29, 893–905 (2013). https://doi.org/10.1007/s00381-013-2061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-013-2061-4

Keywords

Navigation