Skip to main content

Advertisement

Log in

The pathophysiology of brain swelling associated with subdural hemorrhage: the role of the trigeminovascular system

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

This paper reviews the evidence in support of the hypothesis that the trigeminal system mediates brain swelling associated with subdural bleeding. The trigeminovascular system has been extensively studied in migraine; it may play an important but under-recognized role in the response to head trauma. Nerve fibers originating in trigeminal ganglion cells are the primary sensors of head trauma and, through their collateral innervation of the intracranial and dural blood vessels, are capable of inciting a cascade of vascular responses and brain swelling. The extensive trigeminal representation in the brainstem initiates and augments autonomic responses. Blood and tissue injury in the dura incite neurogenic inflammatory responses capable of sensitizing dural nerves and potentiating the response to trauma.

Discussion

The trigeminal system may provide the anatomo-physiological link between small-volume, thin subdural bleeds and swelling of the underlying brain. This physiology may help to explain the poorly understood phenomena of “second-impact syndrome,” the infant response to subdural bleeding (the “big black brain”), as well as post-traumatic subdural effusions. Considerable age-specific differences in the density of dural innervation exist; age-specific responses of this innervation may explain differences in the brain's response to trauma in the young. An understanding of this pathophysiology is crucial to the development of intervention and treatment of these conditions. Antagonists to specific neuropeptides of the trigeminal system modify brain swelling after trauma and should be further explored as potential therapy in brain trauma and subdural bleeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andres KH, Von DM, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl) 175:289–301

    Article  CAS  Google Scholar 

  2. Arbab MA, Wiklund L, Svendgaard NA (1986) Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience 19:695–708

    Article  PubMed  CAS  Google Scholar 

  3. Auer LM, Ishiyama N, Hodde KC, Kleinert R, Pucher R (1987) Effect of intracranial pressure on bridging veins in rats. J Neurosurg 67:263–268

    Article  PubMed  CAS  Google Scholar 

  4. Baechli H, Behzad M, Schreckenberger M, Buchholz HG, Heimann A, Kempski O, Alessandri B (2010) Blood constituents trigger brain swelling, tissue death, and reduction of glucose metabolism early after acute subdural hematoma in rats. J Cereb Blood Flow Metab 30:576–585

    Article  PubMed  CAS  Google Scholar 

  5. Barlow SM (2009) Central pattern generation involved in oral and respiratory control for feeding in the term infant. Curr Opin Otolaryngol Head Neck Surg 17:187–193

    Article  PubMed  Google Scholar 

  6. Black PH (2002) Stress and the inflammatory response: a review of neurogenic inflammation. Brain Behav Immun 16:622–653

    Article  PubMed  CAS  Google Scholar 

  7. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142

    Article  PubMed  CAS  Google Scholar 

  8. Bruce DA, Alavi A, Bilaniuk L, Dolinskas C, Obrist W, Uzzell B (1981) Diffuse cerebral swelling following head injuries in children: the syndrome of “malignant brain edema”. J Neurosurg 54:170–178

    Article  PubMed  CAS  Google Scholar 

  9. Burstein R, Jakubowski M (2004) Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization. Ann Neurol 55:27–36

    Article  PubMed  CAS  Google Scholar 

  10. Busija DW, Bari F, Domoki F, Horiguchi T, Shimizu K (2008) Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog Neurobiol 86:379–395

    Article  PubMed  CAS  Google Scholar 

  11. Caldarelli M, Di RC, Romani R (2002) Surgical treatment of chronic subdural hygromas in infants and children. Acta Neurochir (Wien) 144:581–588

    Article  CAS  Google Scholar 

  12. Cantu RC, Gean AD (2010) Second-impact syndrome and a small subdural hematoma: an uncommon catastrophic result of repetitive head injury with a characteristic imaging appearance. J Neurotrauma 27:1557–1564

    Article  PubMed  Google Scholar 

  13. Cernak I, Chang T, Ahmed FA, Cruz MI, Vink R, Stoica B, Faden AI (2010) Pathophysiological response to experimental diffuse brain trauma differs as a function of developmental age. Dev Neurosci 32:442–453

    PubMed  CAS  Google Scholar 

  14. Cohen MC, Scheimberg I (2008) Evidence of occurrence of intradural and subdural hemorrhage in the perinatal and neonatal period in the context of hypoxic ischemic encephalopathy: an observational study from two referral institutions in the United Kingdom. Pediatr Dev Pathol 12:169–176

    Article  Google Scholar 

  15. Cohen MC, Sprigg A, Whitby EH (2010) Subdural hemorrhage, intradural hemorrhage and hypoxia in the pediatric and perinatal post mortem: are they related? An observational study combining the use of post mortem pathology and magnetic resonance imaging. Forensic Sci Int 200:100–107

    Article  PubMed  Google Scholar 

  16. Davidson JR, Mack J, Gutnikova A, Varatharaj A, Darby S, Squier W (2012) Developmental changes in human dural innervation. Childs Nerv Syst 28:665–671

    Article  PubMed  CAS  Google Scholar 

  17. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR AmJ Neuroradiol 29:1428–1435

    Article  CAS  Google Scholar 

  18. Donkin JJ, Vink R (2010) Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 23:293–299

    Article  PubMed  CAS  Google Scholar 

  19. Donkin JJ, Nimmo AJ, Cernak I, Blumbergs PC, Vink R (2009) Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab 29:1388–1398

    Article  PubMed  CAS  Google Scholar 

  20. Donkin JJ, Cernak I, Blumbergs PC, Vink R (2011) A substance P antagonist reduces axonal injury and improves neurologic outcome when administered up to 12 h after traumatic brain injury. J Neurotrauma 28:217–224

    Article  PubMed  Google Scholar 

  21. Duhaime AC, Durham S (2007) Traumatic brain injury in infants: the phenomenon of subdural hemorrhage with hemispheric hypodensity (“big black brain”). Prog Brain Res 161:293–302

    Article  PubMed  Google Scholar 

  22. Ebersberger A, Handwerker HO, Reeh PW (1999) Nociceptive neurons in the rat caudal trigeminal nucleus respond to blood plasma perfusion of the subarachnoid space: the involvement of complement. Pain 81:283–288

    Article  PubMed  CAS  Google Scholar 

  23. Eikermann-Haerter K, Moskowitz MA (2008) Animal models of migraine headache and aura. Curr Opin Neurol 21:294–300

    Article  PubMed  Google Scholar 

  24. Elliott MB, Tuma RF, Amenta PS, Barbe MF, Jallo J (2011) Acute effects of a selective cannabinoid-2 receptor agonist on neuroinflammation in a murine model of traumatic brain injury. J Neurotrauma 28:973–981

    Article  PubMed  Google Scholar 

  25. Feng JF, Jiang JY, Bao YH, Liang YM, Pan YH (2008) Traumatic subdural effusion evolves into chronic subdural hematoma: two stages of the same inflammatory reaction? Med Hypotheses 70:1147–1149

    Article  PubMed  Google Scholar 

  26. Finan DS, Smith A (2005) Jaw stretch reflexes in children. Exp Brain Res 164:58–66

    Article  PubMed  Google Scholar 

  27. Fricke B, Andres KH, Von DM (2001) Nerve fibers innervating the cranial and spinal meninges: morphology of nerve fiber terminals and their structural integration. Microsc Res Tech 53:96–105

    Article  PubMed  CAS  Google Scholar 

  28. Friede RL (1989) Subdural haematomas, hygromas and effusions. In: Friede RL (ed) Developmental neuropathology. Springer, Gottingen, pp 198–208

    Chapter  Google Scholar 

  29. Goadsby PJ, Sercombe R (1996) Neurogenic regulation of cerebral blood flow: extrinsic neural control. In: Mraovitch S, Sercombe R (eds) Neurophysiological basis of cerebral blood flow control: an introduction. John Libbey and Co Ltd, London, pp 285–321

    Google Scholar 

  30. Gorini C, Philbin K, Bateman R, Mendelowitz D (2010) Endogenous inhibition of the trigeminally evoked neurotransmission to cardiac vagal neurons by muscarinic acetylcholine receptors. J Neurophysiol 104:1841–1848

    Article  PubMed  CAS  Google Scholar 

  31. Guthkelch AN (1953) Subdural effusions in infancy: 24 cases. Br Med J 1:233–239

    Article  PubMed  CAS  Google Scholar 

  32. Haines DE, Harkey HL, Al Mefty O (1993) The “subdural” space: a new look at an outdated concept. Neurosurgery 32:111–120

    Article  PubMed  CAS  Google Scholar 

  33. Harriott AM, Gold MS (2009) Electrophysiological properties of dural afferents in the absence and presence of inflammatory mediators. J Neurophysiol 101:3126–3134

    Article  PubMed  Google Scholar 

  34. Hasegawa M, Yamashima T, Yamashita J, Suzuki M, Shimada S (1992) Traumatic subdural hygroma: pathology and meningeal enhancement on magnetic resonance imaging. Neurosurgery 31:580–585

    Article  PubMed  CAS  Google Scholar 

  35. Ho TW, Ferrari MD, Dodick DW, Galet V, Kost J, Fan X, Leibensperger H, Froman S, Assaid C, Lines C, Koppen H, Winner PK (2008) Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet 372:2115–2123

    Article  PubMed  CAS  Google Scholar 

  36. Horgan K, O’Connor TP, van der Kooy D (1990) Prenatal specification and target induction underlie the enrichment of calcitonin gene-related peptide in the trigeminal ganglion neurons projecting to the cerebral vasculature. J Neurosci 10:2485–2492

    PubMed  CAS  Google Scholar 

  37. Humphrey T (1952) The spinal tract of the trigeminal nerve in human embryos between 7 1/2 and 8 1/2 weeks of menstrual age and its relation to early fetal behavior. J Comp Neurol 97:143–209

    Article  PubMed  CAS  Google Scholar 

  38. Krasnokutsky MV (2011) Cerebral venous thrombosis: a potential mimic of primary traumatic brain injury in infants. Am J Roentgenol 197:W503–W507

    Article  Google Scholar 

  39. Levy D, Burstein R, Kainz V, Jakubowski M, Strassman AM (2007) Mast cell degranulation activates a pain pathway underlying migraine headache. Pain 130:166–176

    Article  PubMed  CAS  Google Scholar 

  40. Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML (2010) Mast cells as early responders in the regulation of acute blood–brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab 30:689–702

    Article  PubMed  Google Scholar 

  41. Liu H, Brown JL, Jasmin L, Maggio JE, Vigna SR, Mantyh PW, Basbaum AI (1994) Synaptic relationship between substance P and the substance P receptor: light and electron microscopic characterization of the mismatch between neuropeptides and their receptors. Proc Natl Acad Sci USA 91:1009–1013

    Article  PubMed  CAS  Google Scholar 

  42. Marmarou A (2007) A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus 22:E1

    Google Scholar 

  43. Marmarou A, Signoretti S, Aygok G, Fatouros P, Portella G (2006) Traumatic brain edema in diffuse and focal injury: cellular or vasogenic? Acta Neurochir 96:24–29

    Article  CAS  Google Scholar 

  44. Marmarou A, Signoretti S, Fatouros PP, Portella G, Aygok GA, Bullock MR (2006) Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg 104:720–730

    Article  PubMed  Google Scholar 

  45. Marriott I, Bost KL (1998) Substance P diminishes lipopolysaccharide and interferon-gamma-induced TGF-beta 1 production by cultured murine macrophages. Cell Immunol 183:113–120

    Article  PubMed  CAS  Google Scholar 

  46. Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becker DP (1997) Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 87:9–19

    Article  PubMed  CAS  Google Scholar 

  47. Matsushige T, Kiya K, Satoh H, Mizoue T, Kagawa K, Araki H (2004) Cerebral venous congestion following closed head injury in a child. Pediatr Neurosurg 40:241–244

    Article  PubMed  Google Scholar 

  48. McConnell AA (1941) Traumatic subdural effusions. J Neurol Psychiatr 4:237–256

    Article  CAS  Google Scholar 

  49. Mori T, Katayama Y, Kawamata T (2006) Acute hemispheric swelling associated with thin subdural hematomas: pathophysiology of repetitive head injury in sports. Acta Neurochir 96:40–43

    Article  CAS  Google Scholar 

  50. Moskowitz MA (2007) Genes, proteases, cortical spreading depression and migraine: impact on pathophysiology and treatment. Funct Neurol 22:133–136

    PubMed  Google Scholar 

  51. Nimmo AJ, Cernak I, Heath DL, Hu X, Bennett CJ, Vink R (2004) Neurogenic inflammation is associated with development of edema and functional deficits following traumatic brain injury in rats. Neuropeptides 38:40–47

    Article  PubMed  CAS  Google Scholar 

  52. O’Connor TP, van der Kooy D (1986) Pattern of intracranial and extracranial projections of trigeminal ganglion cells. J Neurosci 6:2200–2207

    PubMed  Google Scholar 

  53. O’Connor TP, van der Kooy D (1986) Cell death organizes the postnatal development of the trigeminal innervation of the cerebral vasculature. Brain Res 392:223–233

    PubMed  Google Scholar 

  54. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P (2009) Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol 8:679–690

    Article  PubMed  Google Scholar 

  55. Papadopoulos MC, Verkman AS (2007) Aquaporin-4 and brain edema. Pediatr Nephrol 22:778–784

    Article  PubMed  Google Scholar 

  56. Papaiconomou C, Zakharov A, Azizi N, Djenic J, Johnston M (2004) Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Childs Nerv Syst 20:29–36

    Article  PubMed  CAS  Google Scholar 

  57. Park CK, Choi KH, Kim MC, Kang JK, Choi CR (1994) Spontaneous evolution of posttraumatic subdural hygroma into chronic subdural haematoma. Acta Neurochir (Wien) 127:41–47

    Article  CAS  Google Scholar 

  58. Patel TR, Schielke GP, Hoff JT, Keep RF, Lorris BA (1999) Comparison of cerebral blood flow and injury following intracerebral and subdural hematoma in the rat. Brain Res 829:125–133

    Article  PubMed  CAS  Google Scholar 

  59. Raja SN, Meyer RA, Ringkamp M, Campbell JN (1999) Peripheral neural mechanisms of nociception. In: Wall PD, Melzack R (eds) Textbook of pain. Churchill Livingstone, Edinburgh

    Google Scholar 

  60. Ray BWH (1940) Experimental studies on headache. Arch Surg 41:813–856

    Article  Google Scholar 

  61. Richardson JD, Vasko MR (2002) Cellular mechanisms of neurogenic inflammation. J Pharmacol Exp Ther 302:839–845

    Article  PubMed  CAS  Google Scholar 

  62. Roach ES, Golomb MR, Adams R, Biller J, Daniels S, DeVeber G, Ferriero D, Jones BV, Kirkham FJ, Scott RM, Smith ER (2008) Management of stroke in infants and children: a scientific statement from a Special Writing Group of the American Heart Association Stroke Council and the Council on Cardiovascular Disease in the Young. Stroke 39:2644–2691

    Article  PubMed  Google Scholar 

  63. Sakas DE, Moskowitz MA, Wei EP, Kontos HA, Kano M, Ogilvy CS (1989) Trigeminovascular fibers increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci USA 86:1401–1405

    Article  PubMed  CAS  Google Scholar 

  64. Sakas DE, Whittaker KW, Whitwell HL, Singounas EG (1997) Syndromes of posttraumatic neurological deterioration in children with no focal lesions revealed by cerebral imaging: evidence for a trigeminovascular pathophysiology. Neurosurgery 41:661–667

    PubMed  CAS  Google Scholar 

  65. Sandu N, Spiriev T, Lemaitre F, Filis A, Schaller B (2010) New molecular knowledge towards the trigemino-cardiac reflex as a cerebral oxygen-conserving reflex. Sci World J 10:811–817

    Article  CAS  Google Scholar 

  66. Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V (2002) The tachykinin peptide family. Pharmacol Rev 54:285–322

    Article  PubMed  CAS  Google Scholar 

  67. Si Z, Luan L, Kong D, Zhao G, Wang H, Zhang K, Yu T, Pang Q (2008) MRI-based investigation on outflow segment of cerebral venous system under increased ICP condition. Eur J Med Res 13:121–126

    PubMed  CAS  Google Scholar 

  68. Smith JM, Bradley DP, James MF, Huang CL (2006) Physiological studies of cortical spreading depression. Biol Rev Camb Philos Soc 81:457–481

    Article  PubMed  Google Scholar 

  69. Squier W, Mack J (2009) The neuropathology of infant subdural haemorrhage. Forensic Sci Int 187:6–13

    Article  PubMed  Google Scholar 

  70. Squier W, Lindberg E, Mack J, Darby S (2009) Demonstration of fluid channels in human dura and their relationship to age and intradural bleeding. Childs Nerv Syst 25:925–931

    Article  PubMed  CAS  Google Scholar 

  71. Stam AH, Luijckx GJ, Poll-The BT, Ginjaar IB, Frants RR, Haan J, Ferrari MD, Terwindt GM, van den Maagdenberg AM (2009) Early seizures and cerebral oedema after trivial head trauma associated with the CACNA1A S218L mutation. J Neurol Neurosurg Psychiatry 80:1125–1129

    Article  PubMed  CAS  Google Scholar 

  72. Staudt M (2010) Brain plasticity following early life brain injury: insights from neuroimaging. Semin Perinatol 34:87–92

    Article  PubMed  Google Scholar 

  73. Stokely ME, Orr EL (2008) Acute effects of calvarial damage on dural mast cells, pial vascular permeability, and cerebral cortical histamine levels in rats and mice. J Neurotrauma 25:52–61

    Article  PubMed  Google Scholar 

  74. Strassman AM, Levy D (2006) Response properties of dural nociceptors in relation to headache. J Neurophysiol 95:1298–1306

    Article  PubMed  Google Scholar 

  75. Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384:560–564

    Article  PubMed  CAS  Google Scholar 

  76. Thornton E, Ziebell JM, Leonard AV, Vink R (2010) Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury. Molecules 15:6598–6618

    Article  PubMed  CAS  Google Scholar 

  77. Toda M, Suzuki T, Hosono K, Kurihara Y, Kurihara H, Hayashi I, Kitasato H, Hoka S, Majima M (2008) Roles of calcitonin gene-related peptide in facilitation of wound healing and angiogenesis. Biomed Pharmacother 62:352–359

    Article  PubMed  CAS  Google Scholar 

  78. Troger J, Kieselbach G, Teuchner B, Kralinger M, Nguyen QA, Haas G, Yayan J, Gottinger W, Schmid E (2007) Peptidergic nerves in the eye, their source and potential pathophysiological relevance. Brain Res Rev 53:39–62

    Article  PubMed  Google Scholar 

  79. Truex RC, Carpenter MB (1969) Human neuroanatomy. The Williams and Wilkins Company, Baltimore

    Google Scholar 

  80. Varatharaj A, Mack J, Davidson JR, Gutnikov A, Squier W (2012) Mast cells in the human dura: effects of age and dural bleeding. Childs Nerv Syst 28:541–545

    Article  PubMed  CAS  Google Scholar 

  81. Vignes JR, Dagain A, Guerin J, Liguoro D (2007) A hypothesis of cerebral venous system regulation based on a study of the junction between the cortical bridging veins and the superior sagittal sinus. Laboratory investigation. J Neurosurg 107:1205–1210

    Article  PubMed  Google Scholar 

  82. Vinchon M, Joriot S, Jissendi-Tchofo P, Dhellemmes P (2006) Postmeningitis subdural fluid collection in infants: changing pattern and indications for surgery. J Neurosurg 104:383–387

    PubMed  Google Scholar 

  83. Wells RG, Sty JR (2003) Traumatic low attenuation subdural fluid collections in children younger than 3 years. Arch Pediatr Adolesc Med 157:1005–1010

    Article  PubMed  Google Scholar 

  84. Yu Y, Chen J, Si Z, Zhao G, Xu S, Wang G, Ding F, Luan L, Wu L, Pang Q (2010) The hemodynamic response of the cerebral bridging veins to changes in ICP. Neurocrit Care 12:117–123

    Article  PubMed  Google Scholar 

  85. Zacest AC, Vink R, Manavis J, Sarvestani GT, Blumbergs PC (2010) Substance P immunoreactivity increases following human traumatic brain injury. Acta Neurochir 106:211–216

    Article  Google Scholar 

  86. Zanini MA, de Lima Resende LA, de Souza Faleiros AT, Gabarra RC (2008) Traumatic subdural hygromas: proposed pathogenesis based classification. J Trauma 64:705–713

    Article  PubMed  Google Scholar 

  87. Zouros A, Bhargava R, Hoskinson M, Aronyk KE (2004) Further characterization of traumatic subdural collections of infancy. Report of five cases. J Neurosurg 100:512–518

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank those families who gave us consent to study the brains of their babies in order to undertake this work. We thank Mrs. Carolyn Sloan and Joseph Davidson for staining the dural sections and Martha Hansell for drawing Fig. 4. We acknowledge our colleagues, particularly Professor Margaret Esiri and Dr. Monika Hofer, whose comments were most helpful in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waney Squier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Squier, W., Mack, J., Green, A. et al. The pathophysiology of brain swelling associated with subdural hemorrhage: the role of the trigeminovascular system. Childs Nerv Syst 28, 2005–2015 (2012). https://doi.org/10.1007/s00381-012-1870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-012-1870-1

Keywords

Navigation