Skip to main content

Advertisement

Log in

Developmental changes in human dural innervation

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

There is limited published work on the abundant innervation of the human dura mater, its role and responses to injury in humans. The dura not only provides mechanical support for the brain but may also have other functions, including control of the outflow of venous blood from the brain via the dural sinuses. The trigeminal nerve supplies sensory fibres to the dura as well as the leptomeninges, intracranial blood vessels, face, nose and mouth. Its relatively large size in embryonic life suggests an importance in development; the earliest fetal reflexes, mediated by the trigeminal, are seen by 8 weeks. Trigeminal functions vital to the fetus include the coordination of sucking and swallowing and the protective oxygen-conserving reflexes. Like other parts of the nervous system, the trigeminal undergoes pruning and remodelling throughout development.

Methods

We have investigated changes in the innervation of the human dura with age in 27 individuals aged between 31 weeks of gestation and 60 years of postnatal life. Using immunocytochemistry with antibodies to neurofilament, we have found significant changes in the density of dural innervation with age

Results

The density of innervation increased between 31 and 40 weeks of gestation, peaking at term and decreasing in the subsequent 3 months, remaining low until the sixth decade.

Conclusions

Our observations are consistent with animal studies but are, to our knowledge, the first to show age-related changes in the density of innervation in the human dura. They provide new insights into the functions of the human dura during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andres KH, Von DM, Muszynski K, Schmidt RF (1987) Nerve fibres and their terminals of the dura mater encephali of the rat. Anat Embryol (Berl) 175(3):289–301

    Article  CAS  Google Scholar 

  2. Arbab MA, Wiklund L, Svendgaard NA (1986) Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience 19(3):695–708

    Article  PubMed  CAS  Google Scholar 

  3. Auer LM, Ishiyama N, Hodde KC, Kleinert R, Pucher R (1987) Effect of intracranial pressure on bridging veins in rats. J Neurosurg 67(2):263–268

    Article  PubMed  CAS  Google Scholar 

  4. Aukes AM, Bishop N, Godfrey J, Cipolla MJ (2008) The influence of pregnancy and gender on perivascular innervation of rat posterior cerebral arteries. Reprod Sci 15(4):411–419. doi:10.1177/1933719107314067

    Article  PubMed  CAS  Google Scholar 

  5. Browder J, Kaplan HA, Krieger AJ (1975) Venous lakes in the suboccipital dura mater and falx cerebelli of infants: surgical significance. Surg Neurol 4(1):53–55

    PubMed  CAS  Google Scholar 

  6. Busija DW, Bari F, Domoki F, Horiguchi T, Shimizu K (2008) Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog Neurobiol 86(4):379–395

    Article  PubMed  CAS  Google Scholar 

  7. Erzurumlu RS, Killackey HP (1983) Development of order in the rat trigeminal system. J Comp Neurol 213(4):365–380. doi:10.1002/cne.902130402

    Article  PubMed  CAS  Google Scholar 

  8. Fox RJ (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39(1):84–91

    Article  PubMed  CAS  Google Scholar 

  9. Fricke B, Andres KH, Von DM (2001) Nerve fibers innervating the cranial and spinal meninges: morphology of nerve fiber terminals and their structural integration. Microsc Res Tech 53(2):96–105

    Article  PubMed  CAS  Google Scholar 

  10. Goadsby PJ, Sercombe R (1996) Neurogenic regulation of cerebral blood flow: extrinsic neural control. In: Mraovitch S, Sercombe R (eds) Neurophysiological basis of cerebral blood flow control: an introduction. John Libbey and Co. Ltd., London, pp 285–321

    Google Scholar 

  11. Gorini C, Philbin K, Bateman R, Mendelowitz D (2010) Endogenous inhibition of the trigeminally evoked neurotransmission to cardiac vagal neurons by muscarinic acetylcholine receptors. J Neurophysiol 104(4):1841–1848. doi:10.1152/jn.00442.2010

    Article  PubMed  CAS  Google Scholar 

  12. Horgan K, O’Connor TP, van der Kooy D (1990) Prenatal specification and target induction underlie the enrichment of calcitonin gene-related peptide in the trigeminal ganglion neurons projecting to the cerebral vasculature. J Neurosci 10(7):2485–2492

    PubMed  CAS  Google Scholar 

  13. Humphrey T (1952) The spinal tract of the trigeminal nerve in human embryos between 7 1/2 and 8 1/2 weeks of menstrual age and its relation to early fetal behavior. J Comp Neurol 97:143–209

    Article  PubMed  CAS  Google Scholar 

  14. Kinney HC, Thach BT (2009) The sudden infant death syndrome. N Engl J Med 361(8):795–805

    Article  PubMed  CAS  Google Scholar 

  15. Lagercrantz H, Edwards D, Henderson-Smart D, Hertzberg T, Jeffery H (1990) Autonomic reflexes in preterm infants. Acta Paediatr Scand 79(8–9):721–728

    Article  PubMed  CAS  Google Scholar 

  16. O’Connor TP, van der Kooy D (1986) Cell death organizes the postnatal development of the trigeminal innervation of the cerebral vasculature. Brain Res 392(1–2):223–233

    PubMed  Google Scholar 

  17. O’Connor TP, van der Kooy D (1986) Pattern of intracranial and extracranial projections of trigeminal ganglion cells. J Neurosci 6(8):2200–2207

    PubMed  Google Scholar 

  18. O’Connor TP, van der Kooy D (1989) Cooperation and competition during development: neonatal lesioning of the superior cervical ganglion induces cell death of trigeminal neurons innervating the cerebral blood vessels but prevents the loss of axon collaterals from the neurons that survive. J Neurosci 9(5):1490–1501

    PubMed  Google Scholar 

  19. Papaiconomou C, Zakharov A, Azizi N, Djenic J, Johnston M (2004) Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Childs Nerv Syst 20(1):29–36

    Article  PubMed  CAS  Google Scholar 

  20. Penfield WMF (1940) Dural headache and the innervation of the dura mater. Arch Neurol Psychiatr 44:43–75

    Google Scholar 

  21. Rozniecki JJ, Dimitriadou V, Lambracht-Hall M, Pang X, Theoharides TC (1999) Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo. Brain Res 849(1–2):1–15

    Article  PubMed  CAS  Google Scholar 

  22. Sakas DE, Whittaker KW, Whitwell HL, Singounas EG (1997) Syndromes of posttraumatic neurological deterioration in children with no focal lesions revealed by cerebral imaging: evidence for a trigeminovascular pathophysiology. Neurosurgery 41(3):661–667

    PubMed  CAS  Google Scholar 

  23. Si Z, Luan L, Kong D, Zhao G, Wang H, Zhang K, Yu T, Pang Q (2008) MRI-based investigation on outflow segment of cerebral venous system under increased ICP condition. Eur J Med Res 13(3):121–126

    PubMed  CAS  Google Scholar 

  24. Squier W, Lindberg E, Mack J, Darby S (2009) Demonstration of fluid channels in human dura and their relationship to age and intradural bleeding. Childs Nerv Syst 25(8):925–931

    Article  PubMed  CAS  Google Scholar 

  25. Staudt M (2010) Brain plasticity following early life brain injury: insights from neuroimaging. Semin Perinatol 34(1):87–92

    Article  PubMed  Google Scholar 

  26. Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384(6609):560–564. doi:10.1038/384560a0

    Article  PubMed  CAS  Google Scholar 

  27. Streeter G (1915) The developmant of the venous sinuses of the dura mater in the human embryo. Am J Anat 18(2):145–178

    Article  Google Scholar 

  28. Thach BT (1997) Reflux associated apnea in infants: evidence for a laryngeal chemoreflex. Am J Med 103(5A):120S–124S

    Article  PubMed  CAS  Google Scholar 

  29. Thornton E, Ziebell JM, Leonard AV, Vink R (2010) Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury. Molecules 15(9):6598–6618

    Article  PubMed  CAS  Google Scholar 

  30. Truex RC, Carpenter MB (1969) Human neuroanatomy, vol 6. Williams and Wilkins, Baltimore

    Google Scholar 

  31. Varatharaj A, Mack J, Davidson JR, Gutnikov A, Squier W (2012) Mast cells in the human dura: effects of age and dural bleeding. Childs Nerv Syst. doi:10.1007/s00381-012-1699-7

  32. Vignes JR, Dagain A, Guerin J, Liguoro D (2007) A hypothesis of cerebral venous system regulation based on a study of the junction between the cortical bridging veins and the superior sagittal sinus. Laboratory investigation. J Neurosurg 107(6):1205–1210

    Article  PubMed  Google Scholar 

  33. Yu Y, Chen J, Si Z, Zhao G, Xu S, Wang G, Ding F, Luan L, Wu L, Pang Q (2010) The hemodynamic response of the cerebral bridging veins to changes in ICP. Neurocrit Care 12(1):117–123

    Article  PubMed  Google Scholar 

  34. Zahl SM, Egge A, Helseth E, Wester K (2011) Benign external hydrocephalus: a review, with emphasis on management. Neurosurg Rev. doi:10.1007/s10143-011-0327-4

  35. Zahl SM, Wester K (2008) Routine measurement of head circumference as a tool for detecting intracranial expansion in infants: what is the gain? A nationwide survey. Pediatrics 121(3):e416–e420. doi:10.1542/peds.2007-1598

    Article  PubMed  Google Scholar 

  36. Zenker W, Kubik S (1996) Brain cooling in humans–anatomical considerations. Anat Embryol (Berl) 193(1):1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mrs. Carolyn Sloan for assistance with the staining of the sections and Dr Steve Chance for discussions and advice on counting.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Squier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, J.R., Mack, J., Gutnikova, A. et al. Developmental changes in human dural innervation. Childs Nerv Syst 28, 665–671 (2012). https://doi.org/10.1007/s00381-012-1727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-012-1727-7

Keywords

Navigation