Skip to main content
Log in

Reactive astrocytosis in feline neonatal hydrocephalus: acute, chronic, and shunt-induced changes

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Reactive astrocytosis has been implicated in injury and recovery patterns associated with hydrocephalus. To investigate temporal changes in astrogliosis during the early progression of hydrocephalus, after shunting, and after long-term ventriculomegaly, glial fibrillary protein (GFAP) levels were analyzed in a feline model.

Methods

Obstructive hydrocephalus was induced in 10-day-old kittens by intracisternal injections of 25% kaolin. Acute non-shunted animals were killed 15 days post-kaolin injection to represent the pre-shunt condition. Shunt-treated animals received ventriculoperitoneal shunts 15 days post-injection and were killed 10 or 60 days later to represent short- and long-term recovery periods. Chronic untreated animals had Ommaya reservoirs implanted 15 days post-kaolin, which were tapped intermittently until they were killed 60 days later. Ventriculomegaly was monitored by neuroimaging before and after shunting and at death. RNA and total protein from primary visual cortex were analyzed by Northern and Western blotting.

Results

GFAP RNA and protein levels for acute and chronic non-shunted hydrocephalic animals were 77% and 247% (p < 0.01) and 659% (p < 0.05) and 871% (p < 0.05) higher than controls, respectively. Shunted animals with short-term recovery demonstrated a mismatch in GFAP levels, with RNA expression decreasing 26% and protein increasing 335% (p < 0.01). Shunted animals with a long-term recovery exhibited GFAP RNA and protein levels 201% and 357% above normal, respectively.

Conclusions

These results indicate that a reactive astrocytic response continues to rise dramatically in chronic hydrocephalus, suggesting ongoing gliosis and potential damage. Shunting partially ameliorates the continuation of astrogliosis, but does not completely reverse this inflammatory reaction even after a long recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albrechtsen M, Sorensen PS, Gjerris F, Bock E (1985) High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J Neurol Sci 70:269–274

    Article  PubMed  CAS  Google Scholar 

  2. Aoyama Y, Kinoshita Y, Yokota A, Hamada T (2006) Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilament-immunostaining method. J Neurosurg 104:332–339

    Article  PubMed  Google Scholar 

  3. Beems T, Simons KS, Van Geel WJ, De Reus HP, Vos PE, Verbeek MM (2003) Serum- and CSF-concentrations of brain specific proteins in hydrocephalus. Acta Neurochir (Wien) 145:37–43

    Article  CAS  Google Scholar 

  4. Buller KM, Carty ML, Reinebrant HE, Wixey JA (2009) Minocycline: A neuroprotective agent for hypoxic-ischemic brain injury in the neonate? J Neurosci Res 87:599–608

    Article  PubMed  CAS  Google Scholar 

  5. Carbonell WS, Murase S, Horwitz AF, Mandell JW (2005) Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study. J Neurosci 25:7040–7047

    Article  PubMed  CAS  Google Scholar 

  6. Cherian S, Whitelaw A, Thoresen M, Love S (2004) The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol 14:305–311

    Article  PubMed  CAS  Google Scholar 

  7. Chumas PD, Drake JM, Del Bigio MR, da Silva MC, Tuor UI (1994) Anaerobic glycolysis preceding white-matter destruction in experimental neonatal hydrocephalus. J Neurosurg 80:491–501

    Article  PubMed  CAS  Google Scholar 

  8. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17

    Article  PubMed  CAS  Google Scholar 

  9. Clancy B, Finlay BL, Darlington RB, Anand KJ (2007) Extrapolating brain development from experimental species to humans. Neurotoxicology 28:931–937

    Article  PubMed  Google Scholar 

  10. da Silva MC, Drake JM, Lemaire C, Cross A, Tuor UI (1994) High-energy phosphate metabolism in a neonatal model of hydrocephalus before and after shunting. J Neurosurg 81:544–553

    Article  PubMed  CAS  Google Scholar 

  11. da Silva MC, Michowicz S, Drake JM, Chumas PD, Tuor UI (1995) Reduced local cerebral blood flow in periventricular white matter in experimental neonatal hydrocephalus-restoration with CSF shunting. J Cereb Blood Flow Metab 15:1057–1065

    Article  PubMed  Google Scholar 

  12. Del Bigio MR, Bruni JE (1991) Silicone oil-induced hydrocephalus in the rabbit. Childs Nerv Syst 7:79–84

    Article  PubMed  Google Scholar 

  13. Del Bigio MR, da Silva MC, Drake JM, Tuor UI (1994) Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J Neurol Sci 21:299–305

    PubMed  Google Scholar 

  14. Del Bigio MR, Zhang YW (1998) Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol 154:157–169

    Article  PubMed  Google Scholar 

  15. Del Bigio MR (2001) Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 12:639–649

    PubMed  Google Scholar 

  16. Del Bigio MR (2002) Neuropathological findings in a child with slit ventricle syndrome. Pediatr Neurosurg 37:148–151

    Article  PubMed  Google Scholar 

  17. Del Bigio MR (2004) Cellular damage and prevention in childhood hydrocephalus. Brain Pathol 14:317–324

    Article  PubMed  Google Scholar 

  18. Del Bigio MR (2010) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16:16–22

    Article  PubMed  Google Scholar 

  19. Deren KE, Packer M, Forsyth J, Milash B, Abdullah OM, Hsu EW, McAllister JP (2010) Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. Exp Neurol 226:110–119

    Article  PubMed  Google Scholar 

  20. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  PubMed  CAS  Google Scholar 

  21. Fernell E, Hagberg G, Hagberg B (1994) Infantile hydrocephalus epidemiology: an indicator of enhanced survival. Arch Dis Child Fetal Neonatal Ed 70:F123–F128

    Article  PubMed  CAS  Google Scholar 

  22. Fernell E, Hagberg G (1998) Infantile hydrocephalus: declining prevalence in preterm infants. Acta Paediatr 87:392–396

    Article  PubMed  CAS  Google Scholar 

  23. Fukumizu M, Takashima S, Becker LE (1996) Glial reaction in periventricular areas of the brainstem in fetal and neonatal posthemorrhagic hydrocephalus and congenital hydrocephalus. Brain Dev 18:40–45

    Article  PubMed  CAS  Google Scholar 

  24. Glees P, Hasan M (1990) Ultrastructure of human cerebral macroglia and microglia: maturing and hydrocephalic frontal cortex. Neurosurg Rev 13:231–242

    Article  PubMed  CAS  Google Scholar 

  25. Hailer NP (2008) Immunosuppression after traumatic or ischemic CNS damage: it is neuroprotective and illuminates the role of microglial cells. Prog Neurobiol 84:211–233

    Article  PubMed  CAS  Google Scholar 

  26. Hale PM, McAllister JP II, Katz SD, Wright LC, Lovely TJ, Miller DW, Wolfson BJ, Salotto AG, Shroff DV (1992) Improvement of cortical morphology in infantile hydrocephalic animals after ventriculoperitoneal shunt placement. Neurosurgery 31:1085–1096

    Article  PubMed  CAS  Google Scholar 

  27. Hatten ME, Liem RK, Shelanski ML, Mason CA (1991) Astroglia in CNS injury. Glia 4:233–243

    Article  PubMed  CAS  Google Scholar 

  28. Hoppe-Hirsch E, Laroussinie F, Brunet L, Sainte-Rose C, Renier D, Cinalli G, Zerah M, Pierre-Kahn A (1998) Late outcome of the surgical treatment of hydrocephalus. Childs Nerv Syst 14:97–99

    Article  PubMed  CAS  Google Scholar 

  29. Hoshi A, Yamamoto T, Shimizu K, Sugiura Y, Ugawa Y (2011) Chemical preconditioning-induced reactive astrocytosis contributes to the reduction of post-ischemic edema through aquaporin-4 downregulation. Exp Neurol 227:89–95

    Article  PubMed  CAS  Google Scholar 

  30. Johanson CE, Duncan JA III, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10

    Article  PubMed  Google Scholar 

  31. Kang JK, Lee IW (1999) Long-term follow-up of shunting therapy. Childs Nerv Syst 15:711–717

    Article  PubMed  CAS  Google Scholar 

  32. Kestle JR (2003) Pediatric hydrocephalus: current management. Neurol Clin 21:883–895, vii

    Article  PubMed  Google Scholar 

  33. Khan OH, Enno TL, Del Bigio MR (2006) Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol 200:311–320

    Article  PubMed  CAS  Google Scholar 

  34. Lindquist B, Carlsson G, Persson EK, Uvebrant P (2005) Learning disabilities in a population-based group of children with hydrocephalus. Acta Paediatr 94:878–883

    Article  PubMed  Google Scholar 

  35. Lindquist B, Persson EK, Uvebrant P, Carlsson G (2008) Learning, memory and executive functions in children with hydrocephalus. Acta Paediatr 97:596–601

    Article  PubMed  Google Scholar 

  36. Lindquist B, Persson EK, Fernell E, Uvebrant P (2011) Very long-term follow-up of cognitive function in adults treated in infancy for hydrocephalus. Childs Nerv Syst 27:597–601

    Article  PubMed  Google Scholar 

  37. Lopes LS, Slobodian I, Del Bigio MR (2009) Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Exp Neurol 219:187–196

    Article  CAS  Google Scholar 

  38. Lovely TJ, McAllister JP II, Miller DW, Lamperti AA, Wolfson BJ (1989) Effects of hydrocephalus and surgical decompression on cortical norepinephrine levels in neonatal cats. Neurosurgery 24:43–52

    Article  PubMed  CAS  Google Scholar 

  39. Lovely TJ, Miller DW, McAllister JP II (1989) A technique for placing ventriculoperitoneal shunts in a neonatal model of hydrocephalus. J Neurosci Methods 29:201–206

    Article  PubMed  CAS  Google Scholar 

  40. Mangano FT, McAllister JP, Jones HC, Johnson MJ, Kriebel RM (1998) The microglial response to progressive hydrocephalus in a model of inherited aqueductal stenosis. Neurol Res 20:697–704

    PubMed  CAS  Google Scholar 

  41. Mao X, Enno TL, Del Bigio MR (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 23:2929–2936

    Article  PubMed  Google Scholar 

  42. McAllister JP, Miller JM (2010) Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res 7:7

    Article  PubMed  Google Scholar 

  43. McAllister JP II, Cohen MI, O'Mara KA, Johnson MH (1991) Progression of experimental infantile hydrocephalus and effects of ventriculoperitoneal shunts: an analysis correlating magnetic resonance imaging with gross morphology. Neurosurgery 29:329–340

    Article  PubMed  Google Scholar 

  44. McAllister JP II, Chovan P (1998) Neonatal hydrocephalus. Mechanisms and consequences. Neurosurg Clin N Am 9:73–93

    PubMed  Google Scholar 

  45. McAllister JP II, Chovan P, Steiner CP, Johnson MJ, Luciano MG, Ayzman I, Wood AS, Tkach JA, Hahn JF (1998) Differential ventricular expansion in hydrocephalus. Eur J Pediatr Surg 8:39–42

    Article  PubMed  Google Scholar 

  46. McAllister JP II (2011) Experimental hydrocephalus. In: Winn HR (ed) Youmans textbook of neurological surgery. Elsevier, New York, pp 2002–2008

    Google Scholar 

  47. Miller JM, Kumar R, McAllister JP, Krause GS (2006) Gene expression analysis of the development of congenital hydrocephalus in the H-Tx rat. Brain Res 1075:36–47

    Article  PubMed  CAS  Google Scholar 

  48. Miller JM, McAllister JP (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5

    Article  PubMed  Google Scholar 

  49. Nagasaka M, Tanaka Y (1991) Effect of ventricular size on intellectual development in children with myelomeningocele. In: Matsumoto S, Tamaki N (eds) Hydrocephalus: pathogenesis and treatment. Springer, Tokyo, pp 563–570

    Google Scholar 

  50. Paul L, Madan M, Rammling M, Chigurupati S, Chan SL, Pattisapu JV (2011) Expression of aquaporin 1 and 4 in a congenital hydrocephalus rat model. Neurosurgery 68:462–473

    Article  PubMed  Google Scholar 

  51. Rubin RC, Hochwald GM, Tiell M, Mizutani H, Ghatak N (1976) Hydrocephalus: I. Histological and ultrastructural changes in the pre-shunted cortical mantle. Surg Neurol 5:109–114

    PubMed  CAS  Google Scholar 

  52. Sgouros S, Malluci C, Walsh AR, Hockley AD (1995) Long-term complications of hydrocephalus. Pediatr Neurosurg 23:127–131

    Article  PubMed  CAS  Google Scholar 

  53. Sival D, Felderhoff-Muser U, Schmitz T, Hoving E, Schaller C, Heep A (2008) Neonatal high pressure hydrocephalus is associated with elevation of pro-inflammatory cytokines IL-18 and IFNgamma in cerebrospinal fluid. Cerebrospinal Fluid Res 5:21

    Article  PubMed  Google Scholar 

  54. Socci DJ, Bjugstad KB, Jones HC, Pattisapu JV, Arendash GW (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol 155:109–117

    Article  PubMed  CAS  Google Scholar 

  55. Sood S, Lokuketagoda J, Ham SD (2005) Periventricular rigidity in long-term shunt-treated hydrocephalus. J Neurosurg 102:146–149

    Article  PubMed  Google Scholar 

  56. Tarnaris A, Watkins LD, Kitchen ND (2006) Biomarkers in chronic adult hydrocephalus. Cerebrospinal Fluid Res 3:11

    Article  PubMed  Google Scholar 

  57. Tullberg M, Rosengren L, Blomsterwall E, Karlsson JE, Wikkelso C (1998) CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology 50:1122–1127

    PubMed  CAS  Google Scholar 

  58. Villani R, Tomei G, Gaini SM, Grimoldi N, Spagnoli D, Bello L (1995) Long-term outcome in aqueductal stenosis. Childs Nerv Syst 11:180–185

    Article  PubMed  CAS  Google Scholar 

  59. Wright LC, McAllister JP II, Katz SD, Miller DW, Lovely TJ, Salotto AG, Wolfson BJ (1990) Cytological and cytoarchitectural changes in the feline cerebral cortex during experimental infantile hydrocephalus. Pediatr Neurosurg 16:139–155

    Article  PubMed  Google Scholar 

  60. Yamada H, Yokota A, Furuta A, Horie A (1992) Reconstitution of shunted mantle in experimental hydrocephalus. J Neurosurg 76:856–862

    Article  PubMed  CAS  Google Scholar 

  61. Yoshida Y, Koya G, Tamayama K, Kumanishi T, Abe S (1990) Development of GFAP-positive cells and reactive changes associated with cystic lesions in HTX rat brain. Neurol Med Chir 30:445–450

    Article  CAS  Google Scholar 

  62. Yuan W, Deren KE, McAllister JP II, Holland SK, Lindquist DM, Cancelliere A, Mason M, Shereen A, Herzler D, Mangano FT (2010) Diffusion tensor imaging correlates with cytopathology in a rat model of neonatal hydrocephalus. Cerebrospinal Fluid Res 7:19

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Neurosurgery and Division of Pediatric Neurosurgery at the University of Utah, the Cleveland Clinic Foundation, and the Leede Hydrocephalus Research Fund. We thank William E. Bingaman, MD, and Narongsak (Ab) Boonswang, MD, for conducting much of the experimental work and Kristin Kraus, MSc, for editorial assistance with this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. McAllister II.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskandari, R., Harris, C.A. & McAllister, J.P. Reactive astrocytosis in feline neonatal hydrocephalus: acute, chronic, and shunt-induced changes. Childs Nerv Syst 27, 2067–2076 (2011). https://doi.org/10.1007/s00381-011-1552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-011-1552-4

Keywords

Navigation