Skip to main content

Advertisement

Log in

Classification of hydrocephalus: critical analysis of classification categories and advantages of “Multi-categorical Hydrocephalus Classification” (Mc HC)

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objective

Hydrocephalus is a complex pathophysiology with disturbed cerebrospinal fluid (CSF) circulation. There are numerous numbers of classification trials published focusing on various criteria, such as associated anomalies/underlying lesions, CSF circulation/intracranial pressure patterns, clinical features, and other categories. However, no definitive classification exists comprehensively to cover the variety of these aspects. The new classification of hydrocephalus, “Multi-categorical Hydrocephalus Classification” (Mc HC), was invented and developed to cover the entire aspects of hydrocephalus with all considerable classification items and categories.

Materials and method

Ten categories include “Mc HC” category I: onset (age, phase), II: cause, III: underlying lesion, IV: symptomatology, V: pathophysiology 1—CSF circulation, VI: pathophysiology 2—ICP dynamics, VII: chronology, VII: post-shunt, VIII: post-endoscopic third ventriculostomy, and X: others. From a 100-year search of publication related to the classification of hydrocephalus, 14 representative publications were reviewed and divided into the 10 categories.

Results and discussion

The Baumkuchen classification graph made from the round o’clock classification demonstrated the historical tendency of deviation to the categories in pathophysiology, either CSF or ICP dynamics.

Conclusion

In the preliminary clinical application, it was concluded that “Mc HC” is extremely effective in expressing the individual state with various categories in the past and present condition or among the compatible cases of hydrocephalus along with the possible chronological change in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bering EA Jr, Sato O (1963) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063

    Article  PubMed  Google Scholar 

  2. Dandy WE (1919) Experimental hydrocephalus. Ann Surg 70:129–142

    Article  PubMed  CAS  Google Scholar 

  3. Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental, clinical and pathological study. Am J Dis Child 8:406–482

    Google Scholar 

  4. De Feo DR, Foltz FL, Hamilton AE (1975) Double compartment hydrocephalus in a patient with cysticercosis meningitis. Surg Neurol 4:247–251

    Google Scholar 

  5. Di Rocco C, McLone DG, Shimoji T et al (1975) Continuous intraventricular cerebrospinal fluid pressure recording in hydrocephalic children during wakefulness and sleep. J Neurosurg 42:683–689

    Article  PubMed  Google Scholar 

  6. Guo WY, Ono S, Oi S, Shen SH, Wong TT, Ching HW, Hung JM (2006) Dynamic motion analysis of fetuses with central nervous system disorders by cine magnetic resonance imaging using fast imaging employing steady-state acquisitions and parallel imaging: a preliminary result. J Neurosurg 105(2):94–100

    PubMed  Google Scholar 

  7. Hakim S, Adams RD (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure observation on cerebrospinal fluid hydrodynamics. J Neurol Sci 2:307–327

    Article  PubMed  CAS  Google Scholar 

  8. Kaufman B, Weiss MH, Young HF et al (1973) Effects of prolonged cerebrospinal fluid shunting on the skull and brain. J Neurosurg 38:288–297

    Article  PubMed  CAS  Google Scholar 

  9. Luedemann W, von Rantenfeld DB, Samii M, Brinker T (2004) Ultrastructure of the cerebrospinal fluid outflow along the optic nerve into the lymphatic system. Childs Nerv Syst 21(2):96–103

    Article  Google Scholar 

  10. Oi S, Matsumoto S (1985) Pathophysiology of nonneoplastic obstruction of the foramen of Monro and progressive unilateral hydrocephalus. Neurosurgery 17:891–896

    Article  PubMed  CAS  Google Scholar 

  11. Oi S, Matsumoto S (1985) Slit ventricles as a cause of isolated ventricles after shunting. Childs Nerv Syst 1(4):189–193

    Article  PubMed  CAS  Google Scholar 

  12. Oi S, Matsumoto S (1986) Isolated fourth ventricle. J Pediatr Neurosci 2:125–133

    Google Scholar 

  13. Oi S, Matsumoto S (1986) Pathophysiology of aqueductal obstruction in isolated IV ventricle after shunting. Childs Nerv Syst 2:282–286

    Article  PubMed  CAS  Google Scholar 

  14. Oi S, Matusmoto S (1986) Morphological findings of postshunt slit-ventricle in experimental canine hydrocephalus—aspects of causative factor for isolated ventricles and slit ventricle syndrome-. Childs Nerv Syst 2:179–184

    Article  PubMed  CAS  Google Scholar 

  15. Oi S, Matsumoto S (1987) Infantile hydrocephalus and the slit ventricle syndrome in early infancy. Childs Nerv Syst 3:145–150

    Article  PubMed  CAS  Google Scholar 

  16. Oi S, Matsumoto S, Katayama K, Mochizuki M (1990) Pathophysiology and postnatal outcome of fetal hydrocephalus. Childs Nerv Syst 6:338–345

    Article  PubMed  CAS  Google Scholar 

  17. Oi S, Kudo H, Yamada H, Kim S, Hamano S, Urui S, Matsumoto S (1991) Hydromyelic hydrocephalus: correlation of hydromyelia with various stages of hydrocephalus in postshunt isolated compartments. J Neurosurg 74:371–379

    Article  PubMed  CAS  Google Scholar 

  18. Oi S (1992) Is the hydrocephalic state progressive to become irreversible during fetal life? Surg Neurol 37:66–68

    Article  PubMed  CAS  Google Scholar 

  19. Oi S, Sato S, Matsumoto S (1994) A new classification of congenital hydrocephalus: prospective classification of congenital hydrocephalous (PCCH) and postnatal prognosis. Part 1. A proposal of a new classification of fetal/neonatal//infantile hydrocephalus based on neuronal maturation process and chronological changes. Jpn J Neurosurg (Jpn) 3:122–127

    Google Scholar 

  20. Oi S, Hidaka M, Matsuzawa K, Tominaga J, Atsumi H, Sato O (1995) Intractable hydrocephalus in a form of progressive and irreversible “hydrocephalus–parkinsonism complex”—a case report. Current Tr Hyd (Tokyo) 5:43–49

    Google Scholar 

  21. Oi S (1996) Recent advances in neuroendoscopic surgery—realistic indications and clinical achievement. Crit Rev Neurosurg 6:64–72

    Google Scholar 

  22. Oi S, Yamada H, Sato O, Matsumoto S (1996) Experimental models of congenital hydrocephalus and comparable clinical problems in the fetal and neonatal periods. Childs Nerv Syst 12:292–302

    Article  PubMed  CAS  Google Scholar 

  23. Oi S, Honda Y, Hidaka M, Sato O, Matsumoto S (1998) Intrauterine high-resolution magnetic resonance imaging in fetal hydrocephalus and prenatal estimation of postnatal outcomes with “perspective classification”. J Neurosurg 88:685–694

    Article  PubMed  CAS  Google Scholar 

  24. Oi S (1998) Hydrocephalus chronology in adults: confused state of the terminology. How should “normal-pressure hydrocephalus” be defined? Crit Rev Neurosurg 8:346–356

    Article  PubMed  Google Scholar 

  25. Oi S, Hidaka M, Honda Y, Togo K, Shinoda M, Shimoda M, Tsugane R, Sato (1999) Neuroendoscopic surgery for specific forms of hydrocephalus. Childs Nerv Syst 15:56–68

    Article  PubMed  CAS  Google Scholar 

  26. Oi S, Shibata M, Tominaga J, Honda Y, Shinoda M, Takei F, Tsugane R, Matsuzawa K, Sato O (2000) Efficacy of neuroendoscopic procedures in “minimally-invasive” preferential management of pineal region tumors—a prospective study. J Neurosurg 93:245–253

    Article  PubMed  CAS  Google Scholar 

  27. Oi S, Shimoda M, Shibata M, Honda Y, Togo K, Shinoda M, Tsugane R, Sato O (2000) Pathophysiology of long-standing overt ventriculomegaly in adults (LOVA). J Neurosurg 92:933–940

    Article  PubMed  CAS  Google Scholar 

  28. Oi S, Di Rocco C (2006) Proposal of evolution theory in cerebrospinal fluid dynamics and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22:662–669

    Article  PubMed  Google Scholar 

  29. Oi S, Samii A, Samii M (2005) Frameless free-hand maneuver of a handy small rigid-rod neuroendoscope with working cannel under high-resolution imaging—technical note. J Neurosurg Pediatr 102:113–118

    Article  Google Scholar 

  30. Oi S, Enchev Y (2008) Neuroendoscopic foraminal plasty of foramen of Monro. Childs Nerv Syst 24–8:933–942

    Article  Google Scholar 

  31. Oi S (2010) Hydrocephalus research update—controversies in definition and classification of hydrocephalus. Neurol Med Chir (Tokyo) 50:859–869

    Article  Google Scholar 

  32. Oi S (2010) “Oi Handy Pro” hands-on seminar neuroendoscopic surgery altas lecture. J Neuroendoscopy 1(3):11–24

    Google Scholar 

  33. Oi S (2010) A proposal of “Multi-categorical Hydrocephalus Classification”: Mc HC—critical review in 72,576,000 patterns of hydrocephalus. J Hydrocephalus 2(1):1–21

    Google Scholar 

  34. Osaka K, Handa H, Matsumoto S, Yasuda M (1980) Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Childs Brain 6(1):26–38

    PubMed  CAS  Google Scholar 

  35. Pudenz RH, Russell FE, Hund AH (1957) Ventriculo-auriculostomy. A technique for shunting cerebrospinal fluid into the rigid auricle. Preliminary report. J Neurosurg 14:171–179

    Article  PubMed  CAS  Google Scholar 

  36. Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16:9–15

    Article  PubMed  Google Scholar 

  37. Raimondi AJ, Bailey OT, McLone DG, Lawson RF, Echeverry A (1973) The pathophysiology and morphology of murine hydrocephalus in hydrocephalus 3 and Ch mutants. Surg Neurol 1:50–55

    PubMed  CAS  Google Scholar 

  38. Raimondi AJ, Clark SJ, McLone DG (1976) Pathogenesis of aqueductal occlusion in congenital murine hydrocephalus. J Neurosurg 45:66–77

    Article  PubMed  CAS  Google Scholar 

  39. Raimondi AJ, Samuelson G, Yarzagaray L et al (1969) Atresia of the foramina of Luschka and Magendie: the Dandy–Walker cyst. J Neurosurg 31:202–216

    Article  PubMed  CAS  Google Scholar 

  40. Russell DS (1949) Observation on the pathology of hydrocephalus. Medical research council. Special report series no. 265. His Majesty’s Stationery Office, London, pp 112–113

    Google Scholar 

  41. Sato O, Bering EA Jr, Yagi M, Tsugane R, Hara M, Amano Y, Asai T (1975) Bulk flow in the cerebrospinal fluid system of the dog. Acta Neurol Scand 51(1):1–11

    Article  PubMed  CAS  Google Scholar 

  42. Weed LH (1914) Studies on cerebrospinal fluid. III. The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi. J Med Res 31:51–91, 111–117

    PubMed  CAS  Google Scholar 

  43. Weed LH (1916) The establishment of the circulation of cerebro-spinal fluid. Anat Rec 10:256–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuo Oi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oi, S. Classification of hydrocephalus: critical analysis of classification categories and advantages of “Multi-categorical Hydrocephalus Classification” (Mc HC). Childs Nerv Syst 27, 1523–1533 (2011). https://doi.org/10.1007/s00381-011-1542-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-011-1542-6

Keywords

Navigation