Skip to main content

Advertisement

Log in

Long-term sequelae after acquired pediatric hemorrhagic cerebellar lesions

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to assess cognitive, affective, and motor long-term sequelae after acquired focal pediatric cerebellar lesions.

Methods

Eight patients with a history of isolated acquired hemorrhagic cerebellar lesions before the age of 13 participated in this study. All participants underwent a neurologic examination, including the Zurich Neuromotor Assessment (ZNA) and the International Cooperative Ataxia Rating Scale (ICARS). Cognitive functions have been evaluated with a general cognitive assessment and an extensive neuropsychological battery. Furthermore, patients and parents filled in questionnaires about quality of life and possible behavioral or emotional problems.

Results

The results revealed that all patients exhibited motor problems (ZNA). Most participants had further restricted oculomotor movements (ICARS). Age at injury and the full scale IQ were significantly positively correlated (Pearson correlation 0.779; p = 0.023). Conversely, no overall neuropsychological profile could be identified except for marginally reduced reaction times and susceptibility to interference. In addition, borderline results in semantic and phonemic word fluency tasks were apparent. A dysexecutive syndrome was diagnosed in one patient. However, verbal performance and reading abilities were non-pathologic in all participants. The patients reported having a good quality of life without major physical restrictions.

Conclusions

Emotional disturbances and the presence of a mild cerebellar cognitive affective syndrome (as frequently described in adult patients) could only be confirmed in adolescents with vermis lesions. Nevertheless, in laboratory conditions, neuropsychological impairments were present in all patients. Heterogeneity of age at injury and exact lesion site may have led to interpersonal differences in neuropsychological outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Holmes G (1939) The cerebellum of man. Brain 62:1–30

    Article  Google Scholar 

  2. Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental skills? Behav Neurosci 100:443–454

    Article  PubMed  CAS  Google Scholar 

  3. Bracke-Tolkmitt R, Linden A, Canavan AGM, Rockstroh B, Scholz E, Wessel K et al (1989) The cerebellum contributes to mental skills. Behav Neurosci 103(2):442–446

    Article  Google Scholar 

  4. Mariën P, Baillieux H, De Smet HJ et al (2009) Cognitive, linguistic and affective disturbances following a right superior cerebellar artery infarction: a case study. Cortex 45:527–536

    Article  PubMed  Google Scholar 

  5. Ackermann H, Mathiak K, Riecker A (2007) The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum 6:202–213

    Article  PubMed  Google Scholar 

  6. Ben-Yehudah G, Fiez JA (2008) Impact of cerebellar lesions on reading and phonological processing. Ann NY Acad Sci 1145:260–1174

    Article  PubMed  Google Scholar 

  7. Murdoch BE (2009) The cerebellum and language: historical perspective and review. Cortex 46(7):858–868

    Article  PubMed  Google Scholar 

  8. Kalashnikova LA, Zueva YV, Pugacheva OV, Korsakova NK (2005) Cognitive impairments in cerebellar infarcts. Neurosci Behav Physiol 35(8):773–779

    Article  PubMed  CAS  Google Scholar 

  9. Molinari M, Leggio MG (2007) Cerebellar information processing and visuospatial functions. Cerebellum 6:214–220

    Article  PubMed  Google Scholar 

  10. Hoffmann M, Schmitt F (2004) Cognitive impairment in isolated subtentorial stroke. Acta Neurol Scand 109:14–24

    Article  PubMed  Google Scholar 

  11. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129:306–320

    Article  PubMed  Google Scholar 

  12. Whigham KB, O’Toole K (2007) Understanding the neuropsychologic outcome of pediatric AVM within a neurodevelopmental framework. Cognit Behav Neurol 20:244–257

    Article  Google Scholar 

  13. Ben-Yehudah G, Guediche S, Fiez JA (2007) Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum 6:193–201

    Article  PubMed  Google Scholar 

  14. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M (2008) Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain 131:1332–1343

    Article  PubMed  CAS  Google Scholar 

  15. Molinari M, Chiricozzi FR, Clausi A, Tedesco AM, De Lisa M, Leggio MG (2008) Cerebellum and detection of sequences, from perception to cognition. Cerebellum 8:611–615

    Article  Google Scholar 

  16. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  17. Timmann D, Konczak J, Ilg W, Domchin O, Hermsdörfer J, Gizewski ER, Schoch B (2009) Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience 162(3):836–851

    Article  PubMed  CAS  Google Scholar 

  18. Kim SG, Ugurbil K, Strick P (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265:949–951

    Article  PubMed  CAS  Google Scholar 

  19. Hu D, Shen H, Zhou Z (2008) Functional asymmetry in the cerebellum. A brief review. Cerebellum 7(3):304–313

    Article  PubMed  Google Scholar 

  20. Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41:31–60

    Article  PubMed  CAS  Google Scholar 

  21. Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:485–461

    Article  Google Scholar 

  22. Thach WT (2007) On the mechanism of cerebellar contributions to cognition. Cerebellum 6:163–167

    Article  PubMed  CAS  Google Scholar 

  23. Gasparini M, DiPiero C, Ciccarelli O, Cacioppo MM, Pantano P, Lenzi GL (1999) Linguistic impairment after right cerebellar stroke: a case report. Eur J Neurol 6:353–356

    Article  PubMed  CAS  Google Scholar 

  24. Scott RB, Stoodley CJ, Anslow P, Stein J, Sugden EM, Mitchell CD (2001) Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol 43:685–691

    Article  PubMed  CAS  Google Scholar 

  25. Riva D (2000) Cerebellar contribution to behaviour and cognition in children. J Neurolinguist 13:215–225

    Article  Google Scholar 

  26. Schmahmann JD, Caplan D (2006) Cognition, emotion and the cerebellum. Brain 129:288–292

    Google Scholar 

  27. Gordon N (2007) The cerebellum and cognition. Eur J Paediatr Neurol 11:232–234

    Article  PubMed  Google Scholar 

  28. Baillieux H, De Smet HJ, Lesage G, Paquier P, Deyn D, Mariën P (2006) Neurobehavioral alternations in an adolescent following posterior fossa tumor resection. Cerebellum 5:289–295

    Article  PubMed  Google Scholar 

  29. Levinsohn L, Cronin-Golomb A, Schmahmann JD (2000) Neuropsychological consequences of cerebellar tumor resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 123:1041–1050

    Article  Google Scholar 

  30. Charalambides C, Dinopoulos A, Sgouros S (2009) Neuropsychological sequelae and quality of life following treatment of posterior fossa ependymomas in children. Childs Nerv Syst 25(10):1313–1320

    Article  PubMed  Google Scholar 

  31. Kossorotoff M, Gonin-Flambois C, Gitiaux C, Quijano S, Boddaert N, Bahi-Buisson N et al (2010) A cognitive and affective pattern in posterior fossa strokes in children: a case series. Dev Med Child Neurol 52(7):626–831

    Article  PubMed  Google Scholar 

  32. Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 123:1051–1061

    Article  PubMed  Google Scholar 

  33. Shevell MI, Majnemer A (1996) Clinical features of developmental disability associated with cerebellar hypoplasia. Pediatr Neurol 15:224–229

    Article  PubMed  CAS  Google Scholar 

  34. Steinlin M (2007) The cerebellum in cognitive processes: supporting studies in children. Cerebellum 6:237–241

    Article  PubMed  Google Scholar 

  35. Steinlin M, Schmid M, Landau K, Boltshauser E (1997) Follow-up in children with Joubert syndrome. Neuropediatrics 28(4):204–211

    Article  PubMed  CAS  Google Scholar 

  36. Volpe JJ (2009) Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol 24(9):1085–1104

    Article  PubMed  Google Scholar 

  37. Messerschmidt A, Fuiko R, Prayer D, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Weber M, Birnbacher R (2008) Disrupted cerebellar development in preterm infants is associated with impaired neurodevelopmental outcome. Eur J Pediatr 167(10):1141–1147

    Article  PubMed  Google Scholar 

  38. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, Borgatti R (2007) Disorders of cognitive and affective development in cerebellar malformations. Brain 130:2646–2660

    Article  PubMed  Google Scholar 

  39. Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Lövblad KO, Ridolfi Lüthy A, Perrig W, Kaufmann F (2003) Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain 126:1988–2008

    Article  Google Scholar 

  40. Steinlin M, Pfister I, Pavlovic J, Everts R, Boltshauser E, Capone Mori A et al (2005) The first three years of the Swiss Neuropaediatric Stroke Registry (SNPSR): a population-based study of incidence, symptoms and risk factors. Neuropediatrics 36(2):90–97

    Article  PubMed  CAS  Google Scholar 

  41. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K et al (1997) International Cooperative Ataxia Rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211

    Article  PubMed  CAS  Google Scholar 

  42. Schoch B, Regel JR, Frings M et al (2007) Reliability and validity of ICARS in focal cerebellar lesions. Mov Disord 22(15):2162–2169

    Article  PubMed  Google Scholar 

  43. Haarmeier T, Thier P (2007) The attentive cerebellum—myth or reality? Cerebellum 6:177–183

    Article  PubMed  Google Scholar 

  44. Bellebaum C, Daum I (2007) Cerebellar involvement in executive control. Cerebellum 6:184–192

    Article  PubMed  Google Scholar 

  45. Rapoport M, van Reekum R, Mayberg H (2000) The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatr Clin Neurosci 12:193–198

    Article  CAS  Google Scholar 

References to test materials and questionnaires

  • 5-point Test: Regard M, Stauss E, Knapp P (1982) Children`s production of verbal and nonverbal fluency tasks. Perceptual and Motor Skills 55: 839–844

    Google Scholar 

  • Child Behaviour Check List (CBCL) and Youth Self Report (YSR): Achenbach TM (1991) Manual for the Child Behavior Checklist/4–18 and the 1991 Profile. Burlington, USA: University of Vermont, Department of Psychiatry

  • Corsi Block Tapping Test (CORSI): Milner B (1971) Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin 27, 273–277

  • Delis-Kaplan Executive Function System (D-KEFS): Delis DC, Kaplan E, Framer IH (2001) Delis–Kaplan Executive Function System. San Antonio, USA: Psychological Corporation. Harcourt Brace and Company

  • International Cooperative Ataxia Rating Scale (ICARS): Trouillas P, Takayanagi T, Hallett M, et al. (1997) International Cooperative Ataxia Rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. Journal of Neurological Sciences 145: 205–211

    Google Scholar 

  • Kidscreen-52 questionnaire: Ravens-Sieberer U, Gosch A, Abel T, Auquier P, Bellach BM, Bruil J, and the European Kidscreen Group (2001) Quality of life in children and adolescents: a European public health perspective. Social and Preventive Medicine 46: 297–302

  • Marburger inventory to establish the quality of life in children and adolescents (ILK-MARSYS): Mattejat F, Remschmidt H (2006) Inventar zur Erfassung der Lebensqualität bei Kindern und Jugendlichen. Ratingbogen für Kinder, Jugendliche und Eltern. Bern, Switzerland: Verlag Hans Huber. (in German)

  • Regensburger Word Fluency Test (RWT): Aschenbrenner S, Tucha O, Lange KW (2000) Regensburger Word Fluency Test (German version). Göttingen, Germany: Hogrefe. (in German)

  • Rey Auditory Verbal Learning Test (RAVLT): Rey A (1964) L`examen clinique en psychologie. Paris: Presses Universitaire de France. (in French)

  • Rey Osterrieth Complex Figure (REY figure): Rey A (1941) L`examen psychologique dans les cas d`encephalopathie traumatique. Archives de Psychologie 28,286-340. (in French)

  • Waber D, Holmes JM (1985) Assessing children’s copy productions of the Rey Osterrieth Complex Figure. Journal of Clinical and Experimental Neuropsychology 7: 264–280

    Google Scholar 

  • Rey Visual Design Learning Test (RVDLT): Rey A (1964) L`examen clinique en psychologie. Paris: Presses Universitaire de France. (in French)

  • Test battery of attentional performance (TAP): Zimmermann P, Fimm B (2002) TAP Testbatterie zur Aufmerksamkeitsprüfung. Herzogenrath, Germany: Psytest. (in German)

  • Wechsler Intelligence Scale for Adults, 3rd edition (WAIS-III): Wechsler D (1999) Wechsler Abbreviated Scales of Intelligence (German version). San Antonio, USA: Psychological Corporation. Harcourt Brace and Company

  • Wechsler Intelligence Scale for Children, 4th edition (WISC-IV): Wechsler D (1991) Wechsler Intelligence Scales for children (German version). San Antonio, USA: Psychological Corporation. Harcourt Brace and Company

  • Wisconsin Card Sorting Test (WSCT): Psychological Assessment Resources (2003) Computerized Wisconsin Card Sort Task Version 4 (WCST). Lutz, USA: Psychological Assessment Resources

  • Zurich Neuromotor Assessment battery (ZNA): Largo RH, Fischer J, Caflisch J (2002) Zurich Neuromotor Assessement. Zurich, Switzerland: AWE Verlag. (in German)

Download references

Acknowledgments

We thank all children/adolescents and parents involved in this project for their participation. We are also very thankful to Mrs. Angela Kummer and Mrs. Jacqueline Brunori for their helpful assistance in preparing the manuscript. There has been no conflict of interest. The study was funded by the Departments of Pediatric Neurology of the University Children’s Hospitals of Bern and Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Wingeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wingeier, K., Bigi, S., El-Koussy, M. et al. Long-term sequelae after acquired pediatric hemorrhagic cerebellar lesions. Childs Nerv Syst 27, 923–931 (2011). https://doi.org/10.1007/s00381-010-1357-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-010-1357-x

Keywords

Navigation