Skip to main content
Log in

Postoperative cerebellar mutism and autistic spectrum disorder

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

I read the article “An Inside View of Autism” written by a 44-year-old autistic woman who had a successful international career designing livestock equipment. In this article, she wrote about her life, disease, and experiences as an autistic individual. She stated that “It is interesting that my speech resembled the stressed speech in young children who have had tumors removed from the cerebellum”.

Methods

In this article, we intend to review and extensively document both postoperative cerebellar mutism and autistic spectrum disorder.

Results

We reviewed the clinical and neurological findings, etio-pathogenesis, neuroanatomy, mechanisms of development, and similarities between the etio-pathogenesis of both diseases.

Conclusions

Cerebellar lesions can produce mutism and dysarthria, symptoms sometimes seen in autistic spectrum disorder. In mammals, cerebellar lesions disturb motivated behavior and reduce social interactions, functions that are disturbed in autistic spectrum disorder and cerebellar mutism. The cerebellum and two regions within the frontal lobes are active in certain language tasks. Language is abnormal in autistic spectrum disorder and cerebellar mutism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmes G (1917) The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 40:461–535

    Article  Google Scholar 

  2. Holmes G (1922) The Croonian lectures on the clinical symptoms of cerebellar disease and their interpretation. Lancet 2:59–65

    Google Scholar 

  3. Rekate HL, Grubb RL, Aram DM, Hahn JF, Ratcheson RA (1985) Muteness of cerebellar origin. Arch Neurol 42:697–8

    PubMed  CAS  Google Scholar 

  4. Ozgur BM, Berberian J, Aryan HE, Meltzer HS, Levy MC (2009) The pathophysiologic mechanism of cerebellar mutism. Surg Neurol 66:18–25

    Article  Google Scholar 

  5. Catsman-Berrevoets CE, Van Donguen HR, Mulder PGH, y Geutze DP, Paquier PF, Lequin MH (1999) Tumour type and size are high risk factors for the syndrome of “cerebellar” mutism and subsequent dysartiria. J Neurol Neurosurg Psychiatry 67:755–757

    Article  PubMed  CAS  Google Scholar 

  6. Pollack IF (1997) Posterior fossa syndrome. Int Rev Neurobiol 41:411–432

    Article  PubMed  CAS  Google Scholar 

  7. Calenberg FV, De Laar AV, Plets C, Goffin J, Casaer P (1995) Transient cerebellar mutism after posterior fossa surgery in children. Neurosurgery 37:894–898

    Article  Google Scholar 

  8. Mewasingh LD, Kadhim H, Christophe C, Christiaens FJ, Dan B (2003) Nonsurgical cerebellar mutism (anarthria) in two children. Pediatr Neurol 28:59–63

    Article  PubMed  Google Scholar 

  9. Frassanito P, Massimi L, Caldarelli M, Di Rocco C (2009) Cerebellar mutism after spontaneous intratumoral bleeding involving the upper cerebellar vermis: a contribution to the physiopathogenic interpretation. Childs Nerv Syst 25:7–11

    Article  PubMed  Google Scholar 

  10. Ersahin Y, Mutluer S, Caglı S, Duman Y (1996) Cerebellar mutism: report of seven cases and review of the literature. Neurosurgery 38:60–66

    Article  PubMed  CAS  Google Scholar 

  11. Al-Anazi A, Hassounah M, Sheikh B, Barayan S (2001) Cerebellar mutism caused by arteriovenous malformation of the vermis. Br J Neurosurg 15:47–50

    Article  PubMed  CAS  Google Scholar 

  12. Bailleieux H, Weyns F, Paquier P, De Deyn PP, Haraoka J (2007) Posterior fossa syndrome after vermian a stroke: a new case and review of the literature. Pediatr Neurosurg 43:386–395

    Article  Google Scholar 

  13. Ryding E, Decety J, Sjöholm H et al (1993) Motor imaginary activates the cerebellum regionally. A SPECT rCBF study with 99mTc-HMPAO. Cogn Brain Res 1:94–99

    Article  CAS  Google Scholar 

  14. Fraioli A, Guidetti B (1975) Effects of stereotactic lesions of the dentate nucleus of the cerebellum in man. Appl Neurophysiol 38:81–90

    PubMed  CAS  Google Scholar 

  15. Ozimek A, Richter S, Hein-Kropp C et al (2004) Cerebellar mutism—report of four cases. J Neurol 251:963–972

    Article  PubMed  CAS  Google Scholar 

  16. Dailey AT, GM McKhann ll, Berger MS (1995) The pathophysiology of oropharyngeal motor apraxia and mutism following resection of posterior fossa tumors in children. J Neurosurg 83:467–475

    Article  PubMed  CAS  Google Scholar 

  17. Sinha AK, Rajander Y, Dinakar I (1998) Transient cerebellar mutism after evacuation of a spontaneous vermian hematoma. Childs Nerv Syst 14:460–462

    Article  PubMed  CAS  Google Scholar 

  18. Kellogg JX, Piatt JH (1997) Resection of fourth ventricle tumors without splitting the vermis: the cerebellomedullary fissure approach. Pediatr Neurosurg 27:28–33

    Article  PubMed  CAS  Google Scholar 

  19. Ersahin Y, Yararbas U, Duman Y, Mutluer S (2002) Single photon emission tomography following posterior fossa surgery in patients with and without mutism. Childs Nerv Syst 18:318–325

    Article  PubMed  Google Scholar 

  20. Ersahin Y (1998) Is splitting of the vermis responsible for cerebellar mutism? Pediatr Neurosurg 28:328

    Article  PubMed  CAS  Google Scholar 

  21. Urban PP, Marx J, Hunsche S, Gawehn J, Vucurevic G, Wicht S, Massinger C, Stoeter P, Hopf HC (2003) Cerebellar speech representation: lesion topography in dysarthria as derived from cerebellar ischemia and functional magnetic imaging. Arch Neurol 60:965–972

    Article  PubMed  Google Scholar 

  22. Van Dongen HR, Catsman-Berrevoets CE, van Mourik M (1994) The syndrome of “cerebellar” mutism and subsequent dysarthria. Neurology 44:2040–2046

    PubMed  Google Scholar 

  23. Gebhart AL, Petersen SE, Thach WT (2002) Role of the posterolateral cerebellum in language. Ann NY Acad Sci 978:318–333

    Article  PubMed  Google Scholar 

  24. Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development. Evidence from a series of children surgically treated for posterior fossa tumours. Brain 123:1051–1061

    Article  PubMed  Google Scholar 

  25. Van Mourik M, Catsman-Berrevoets CE, Van Dongen HR et al (1997) Complex orofacial movements and the disappearance of verebellar mutism. Report of five cases. Dev Med Child Neurol 39:686–690

    Article  PubMed  Google Scholar 

  26. Frim DM, Ogilvy CS (1995) Mutism and cerebellar dysarthria after brain stem surgery: case report. Neurosurgery 36:854–857

    Article  PubMed  CAS  Google Scholar 

  27. Germano A, Baldari S, Caruso G et al (1998) Reversible cerebral perfusion alterations in children with transient mutism after posterior fossa surgery. Childs Nerv Syst 14:112–119

    Google Scholar 

  28. Sagiuchi T, Dshii K, Aoki Y et al (2001) Bilateral crossed cerebello-cerebral diaschisis and mutism after surgery for cerebellar medulloblastoma. Ann Nucl Med 15:157–160

    Article  PubMed  CAS  Google Scholar 

  29. Ildan F, Tuna M, Erman T et al (2002) The evaluation and comparison of cerebellar mutism in children and adults after posterior fossa surgery; report of two adult cases and review of literature. Acta Neurochir 144:463–473

    Article  CAS  Google Scholar 

  30. Ackermann H, Mathiak K, Ivry RB (2004) Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cogn Neursci Rev 3:14–22

    Article  Google Scholar 

  31. Schmahmann JD (1991) An emerging concept: the cerebellar contribution in higher function (Review). Arch Neurol 48:1178–1187

    PubMed  CAS  Google Scholar 

  32. Kim S, Ugurbil K, Strick P (1994) Activation of cerebellar output nucleus during cognitive processing. Science 265:949–951

    Article  PubMed  CAS  Google Scholar 

  33. Gao JH, ParsonsLM Bowe JM et al (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272:545–547

    Article  PubMed  CAS  Google Scholar 

  34. Courchhesne E (1991) Neuroanatomic imaging in autism. Pediatrics 87:781–790

    Google Scholar 

  35. Nelson KB, Grether JK, Croen LA et al (2001) Neuropeptides and neurotrophins in neonatal blood of children with autism of mental retardation. Ann Neurol 49:597–606

    Article  PubMed  CAS  Google Scholar 

  36. Redcay E, Courchesne E (2005) When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol Psychiatry 58:1–9

    Article  PubMed  Google Scholar 

  37. Tastsanis KA, Rourke BP, Klin A et al (2003) Reduced thalamic volume in high functioning individuals with autism. Biol Psychiatry 53:121–129

    Article  Google Scholar 

  38. Scott JA, Schumann CM, Goodlin-Jones BL, Amaral DG (2009) A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Res 2:246–257

    Article  PubMed  Google Scholar 

  39. Carper RA, Courchesne E (2000) Inverse correlation between frontal lobe and cerebellum in children with autism. Brain 123:836–844

    Article  PubMed  Google Scholar 

  40. Quartz SR, Sejnowski TS (1997) The neural basis of cognitive development: a constructivist manifesto. Behav Brain Sci 20:537–556

    PubMed  CAS  Google Scholar 

  41. Steinlin M (2008) Cerebellar disorders in childhood. Cognitive problems. Cerebellum 7:607–610

    Article  PubMed  Google Scholar 

  42. Wills S, Cabanlit M, Bennet J, Ashwood P, Amaral DG, Van de Water J (2009) Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun 23:67–74

    Article  Google Scholar 

  43. Rout UK, Dhossche DM (2008) A pathogenetic model of autism involving Purkinje cell loss through anti GAD antibodies. Med Hypotheses 71:218–221, 44

    Article  PubMed  CAS  Google Scholar 

  44. Yip J, Soghomonian JJ, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in Autism. Pathophysiological implications. Acta Neuropathol 113:559–568

    Article  PubMed  CAS  Google Scholar 

  45. Gharani N, Benayed R, Mancuso V et al (2004) Association of the homeobox transcription factor ENGRAILED 2, with autism spectrum disorder. Mol Psychiatry 9:474–484

    Article  PubMed  CAS  Google Scholar 

  46. Braunschweig D, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen L, Pessah IN, Van de Water J (2008) Autism; maternally derived antibodies specific for fetal brain proteins. Neurotoxicology 29:226–231

    PubMed  CAS  Google Scholar 

  47. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  48. Saitoh O, Karns CM, Courchesne E (2001) Development of the hippocampal formation from 2 to 42 years MRI evidence of smaller area dentata in autism. Brain 124:1317–1324

    Article  PubMed  CAS  Google Scholar 

  49. Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W (2000) Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. Cogn neurosci 11:1997–2000

    CAS  Google Scholar 

  50. Turkstra LS, Bayles KA (1992) Acquired mutism: physiopathology and assessment. Arch Phys Med Rehabil 73:138–144

    PubMed  CAS  Google Scholar 

  51. Lechtenberg R, Gilman S (1978) Speech disorders in cerebellar disease. Ann Neurol 3:285–290

    Article  PubMed  CAS  Google Scholar 

  52. Price BH, Mesulam MM (1987) Behavioral manifestations of central pontine myelinolysis. Arch Neurol 44:671–673

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erol Tasdemiroğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasdemiroğlu, E., Kaya, M., Yıldırım, C.H. et al. Postoperative cerebellar mutism and autistic spectrum disorder. Childs Nerv Syst 27, 869–878 (2011). https://doi.org/10.1007/s00381-010-1316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-010-1316-6

Keywords

Navigation