Skip to main content

Advertisement

Log in

Cellular and paracellular transplants for spinal cord injury: a review of the literature

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Experimental approaches to limit the spinal cord injury and to promote neurite outgrowth and improved function from a spinal cord injury have exploded in recent decades. Due to the cavitation resulting after a spinal cord injury, newer important treatment strategies have consisted of implanting scaffolds with or without cellular transplants. There are various scaffolds, as well as various different cellular transplants including stem cells at different levels of differentiation, Schwann cells and peripheral nerve implants, that have been reviewed. Also, attention has been given to different re-implantation techniques in avulsion injuries.

Methods

Using standard search engines, this literature is reviewed.

Conclusion

Cellular and paracellular transplantation for application to spinal cord injury offers promising results for those patients with spinal cord pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wieble MW 2nd, Chan-Ling T (2007) Phenotypic characterization of neural stem cells from human fetal spinal cord:synergistic effect of LIF and BMP4 to generate astrocytes. Glia 55:1156–1168

    Article  Google Scholar 

  2. Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD (2001) Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 167:27–39

    Article  CAS  PubMed  Google Scholar 

  3. Hung CH, Young TH (2006) Differences in the effect on neural stem cells of fetal bovine serum in substrate-coated and soluble form. Biomaterials 27:5901–5908

    Article  CAS  PubMed  Google Scholar 

  4. Novikova LN, Novikov LN, Kellerth J-O (2002) Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats. J Comp Neurol 452:255–263

    Article  CAS  PubMed  Google Scholar 

  5. Ke Y, Chi L, Xu R, Luo C, Gozal D, Liu R (2006) Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice. Stem Cells 24:1011–1019

    Article  PubMed  Google Scholar 

  6. Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784–1793

    CAS  PubMed  Google Scholar 

  7. Diener PS, Bregman BS (1998) Fetal spinal cord transplants support growth of supraspinal and segmental projections after cervical spinal cord hemisection in the neonatal rat. J Neurosci 18:779–793

    CAS  PubMed  Google Scholar 

  8. Shihabuddin LS, Horner PJ, Ray J, Gage FH (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 20:8727–8735

    CAS  PubMed  Google Scholar 

  9. Fricker RA, Carpenter MK, Winkler C, Greco C, Gates MA, Björklund A (1999) Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J Neurosci 19:5990–6005

    CAS  PubMed  Google Scholar 

  10. Cao QL, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR (2001) Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 167:48–58

    Article  CAS  PubMed  Google Scholar 

  11. Ricci-Vitiani L, Casalbore P, Petrucci G, Lauretti L, Montano N, Larocca LM, Falchetti ML, Lombardi DG, Gerevini VD, Cenciarelli C, D’Alessandris QG, Fernandez E, De Maria R, Maira G, Peschle C, Parati E, Pallini R (2006) Influence of local environment on the differentiation of neural stem cells engrafted onto the injured spinal cord. Neurol Res 28:488–492

    Article  PubMed  Google Scholar 

  12. Gomes FC, Paulin D, Moura Neto V (1999) Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res 32:619–631

    CAS  PubMed  Google Scholar 

  13. Hatten ME, Liem RK, Shelanski ML, Mason CA (1991) Astroglia in CNS injury. Glia 4:233–243

    Article  CAS  PubMed  Google Scholar 

  14. Tang BL, Low CB (2007) Genetic manipulation of neural stem cells for transplantation into the injured spinal cord. Cell Mol Neurobiol 27:75–85

    Article  CAS  PubMed  Google Scholar 

  15. Israel M, Zhang P, Kaufman R, Shinder V, Ella R, Amit M, Itskovitz-Eldor J, Chebath J, Revel M (2007) Human oligodendrocytes derived from embryonic stem cells: effect of noggin on phenotypic differentiation in vitro and on myelination in vivo. Mol Cell Neurosci 34:310–323

    Article  Google Scholar 

  16. Enzmann GU, Benton RL, Woock JP, Howard RM, Tsoulfas P, Whittemore SR (2005) Consequences of noggin expression by neural stem, glial, and neuronal precursor cells engrafted into the injured spinal cord. Exp Neurol 195:293–304

    Article  CAS  PubMed  Google Scholar 

  17. Chen B, Blair DG, Plisov S, Vasiliev G, Perantoni AO, Chen Q, Athanasiou M, Wu JY, Oppenheim JJ, Yang D (2004) Cutting edge: bone morphogenetic protein antagonists Drm/Gremlin and Dan interact with Slits and act as negative regulators of monocyte chemotaxis. J Immunol 173:5914–5917

    CAS  PubMed  Google Scholar 

  18. Davies JE, Huang C, Proschel C, Noble M, Mayer-Proschel M, Davies SJ (2006) Astrocytes derived from glial-restricted precursors promote spinal cord repair. J Biol 5:7

    Article  PubMed  Google Scholar 

  19. Sigurjonsson OE, Perreault MC, Egeland T, Glover JC (2005) Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord. Proc Natl Acad Sci USA 102:5227–5232

    Article  CAS  PubMed  Google Scholar 

  20. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 99:2199–2204

    Article  CAS  PubMed  Google Scholar 

  21. Cummings BJ, Uchida N, Tamaki SJ, Anderson AJ (2006) Human neural stem cell differentiation following transplantation into spinal cord injured mice: association with recovery of locomotor function. Neurol Res 28:474–481

    Article  PubMed  Google Scholar 

  22. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410–1412

    Article  CAS  PubMed  Google Scholar 

  23. Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci USA 97:6126–6131

    Article  CAS  PubMed  Google Scholar 

  24. Ruffini F, Arbour N, Blain M, Olivier A, Antel JP (2004) Distinctive properties of human adult brain-derived myelin progenitor cells. Am J Pathol 165:2167–2175

    PubMed  Google Scholar 

  25. Yarygin VN, Banin VV, Yarygin KN (2003) Regeneration of the rat spinal cord after thoracic segmentectomy: restoration of the anatomical integrity of the spinal cord. Neurosci Behav Physiol 36:483–490

    Article  Google Scholar 

  26. Coumans JV, Lin TT, Dai HN, MacArthur L, McAtee M, Nash C, Bregman BS (2001) Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci 21:9334–9344

    CAS  PubMed  Google Scholar 

  27. Sankar V, Muthusamy R (2003) Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 118:11–17

    Article  CAS  PubMed  Google Scholar 

  28. Wu ZY, Hui GZ, Lu Y, Wu X, Guo LH (2006) Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin Med J (Engl) 119:2101–2107

    Google Scholar 

  29. Ramon-Cueto A, Cordero MI, Santos-Benito FF, Avila J (2000) Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25:425–435

    Article  CAS  PubMed  Google Scholar 

  30. Shen H, Tang Y, Wu Y, Chen Y, Cheng Z (2002) Influences of olfactory ensheathing cells transplantation on axonal regeneration in spinal cord of adult rats. Chin J Traumatol 5:136–141

    PubMed  Google Scholar 

  31. Field P, Li Y, Raisman G (2003) Ensheathment of the olfactory nerves in the adult rat. J Neurocytol 32:317–324

    Article  PubMed  Google Scholar 

  32. Polentes J, Stamegna JC, Nieto-Sampedro M, Gauthier P (2004) Phrenic rehabilitation and diaphragm recovery after cervical injury and transplantation of olfactory ensheathing cells. Neurobiol Dis 16:638–653

    Article  CAS  PubMed  Google Scholar 

  33. Plant GW, Christensen CL, Oudega M, Bunge MB (2003) Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. J Neurotrauma 20:1–16

    Article  PubMed  Google Scholar 

  34. Lu J, Féron F, Mackay-Sim A, Waite PM (2002) Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain 125(Pt 1):14–21

    Article  PubMed  Google Scholar 

  35. Ramer LM, Au E, Richter MW, Liu J, Tetzlaff W, Roskams AJ (2004) Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J Comp Neurol 473:1–15

    Article  PubMed  Google Scholar 

  36. Cao L, Liu L, Chen ZY, Wang LM, Ye JL, Qiu HY, Lu CL, He C (2003) Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain 127(Pt 3):535–549

    Article  PubMed  Google Scholar 

  37. Nash HH, Borke RC, Anders JJ (2002) Ensheathing cells and methylprednisolone promote axonal regeneration and functional recovery in the lesioned adult rat spinal cord. J Neurosci 22:7111–7120

    CAS  PubMed  Google Scholar 

  38. Paíno CL, Fernandez-Valle C, Bates ML, Bunge MB (1994) Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells. J Neurocytol 23:433–452

    Article  PubMed  Google Scholar 

  39. Takami T, Oudega M, Bates ML, Wood PM, Kleitman N, Bunge MB (2002) Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci 22:6670–6681

    CAS  PubMed  Google Scholar 

  40. Lee Y-S, Lin C-Y, Robertson RT, Hsiao I, Lin VW (2004) Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats. J Neuropathol Exp Neurol 63:233–245

    PubMed  Google Scholar 

  41. Blits B, Dijkhuizen PA, Boer GJ, Verhaagen J (2000) Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function. Exp Neurol 164:25–37

    Article  CAS  PubMed  Google Scholar 

  42. Houle JD, Tom VJ, Mayes D, Wagoner G, Phillips N, Silver J (2006) Combining an autologous peripheral nervous system “bridge” and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J Neurosci 26:7405–7415

    Article  CAS  PubMed  Google Scholar 

  43. Ferguson IA, Koide T, Rush RA (2001) Stimulation of corticospinal tract regeneration in the chronically injured spinal cord. Eur J Neurosci 13:1059–1064

    Article  CAS  PubMed  Google Scholar 

  44. Kawaja MD, Gage FH (1991) Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor. Neuron 7:1019–1030

    Article  CAS  PubMed  Google Scholar 

  45. Franzen R, Martin D, Daloze A, Moonen G, Schoenen J (1999) Grafts of meningeal fibroblasts in adult rat spinal cord lesion promote axonal regrowth. NeuroReport 10:1551–1556

    Article  CAS  PubMed  Google Scholar 

  46. Aguayo AJ, David S, Bray GM (1981) Influence of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. J Exp Biol 95:231–240

    CAS  PubMed  Google Scholar 

  47. Dam-Hieu P, Liu S, Choudhri T, Said G, Tadié M (2002) Regeneration of primary sensory axons into the adult rat spinal cord via a peripheral nerve graft bridging the lumbar dorsal roots to the dorsal column. J Neurosci Res 68:293–304

    Article  CAS  PubMed  Google Scholar 

  48. Hayashi Y, Shumsky JS, Connors T, Otsuka T, Fischer I, Tessler A, Murray M (2005) Immunosuppression with either cyclosporine a or FK506 supports survival of transplanted fibroblasts and promotes growth of host axons into the transplant after spinal cord injury. J Neurotrauma 22:1267–1281

    Article  PubMed  Google Scholar 

  49. Iwashita Y, Kawaguchi S, Murata M (1994) Restoration of function by replacement of spinal cord segments in the rat. Nature 367:167–170

    Article  CAS  PubMed  Google Scholar 

  50. Lu Q, Simionescu A, Vyavahare N (2005) Novel capillary channel fiber scaffolds for guided tissue engineering. Acta Biomater 1:607–614

    Article  PubMed  Google Scholar 

  51. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2006) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99:3024–3029

    Article  Google Scholar 

  52. Tsai EC, Dalton PD, Shoichet MS, Tator CH. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 27:519–533

  53. Kataoka K, Suzuki Y, Kitada M, Ohnishi K, Suzuki K, Tanihara M, Ide C, Endo K, Nishimura Y (2001) Alginate, a bioresorbable material derived from brown seaweed, enhances elongation of amputated axons of spinal cord in infant rats. J Biomed Mater Res 54:373–384

    Article  CAS  PubMed  Google Scholar 

  54. Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO, Novikov LN (2006) Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res A 77:242–252

    PubMed  Google Scholar 

  55. Suzuki K, Suzuki Y, Ohnishi K, Endo K, Tanihara M, Nishimura Y (1999) Regeneration of transected spinal cord in young adult rats using freeze–dried alginate gel. NeuroReport 10:2891–2894

    Article  CAS  PubMed  Google Scholar 

  56. Bakshi A, Fisher O, Dagci T, Himes BT, Fischer I, Lowman A (2004) Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury. J Neurosurg Spine 1:322–329

    Article  PubMed  Google Scholar 

  57. Borgens RB, Shi R, Bohnert D (2002) Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. J Exp Biol 205(Pt 1):1–12

    PubMed  Google Scholar 

  58. Cole A, Shi R (2005) Prolonged focal application of polyethylene glycol induces conduction block in guinea pig spinal cord white matter. Toxicol in Vitro 19:215–220

    Article  CAS  PubMed  Google Scholar 

  59. Taylor SJ, McDonald JW 3rd, Sakiyama-Elbert SE (2004) Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Contr Release 98:281–294

    Article  CAS  Google Scholar 

  60. Samadikuchaksaraei A (2007) An overview of tissue engineering approaches for management of spinal cord injuries. J Neuroeng Rehabil 4:15

    Article  PubMed  Google Scholar 

  61. King VR, Henseler M, Brown RA, Priestley JV (2003) Mats made from fibronectin support oriented growth of axons in the damaged spinal cord of the adult rat. Exp Neurol 182:383–398

    Article  CAS  PubMed  Google Scholar 

  62. Stokols S, Tuszynski MH (2004) The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25:5839–5846

    Article  CAS  PubMed  Google Scholar 

  63. Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20:1111–1117

    Article  CAS  PubMed  Google Scholar 

  64. Midha R, Munro CA, Dalton PD, Tator CH, Shoichet MS (2003) Growth factor enhancement of peripheral nerve regeneration through a novel synthetic hydrogel tube. J Neurosurg 99:555–565

    Article  PubMed  Google Scholar 

  65. Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR (1998) Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Contr Release 53:93–102

    Article  CAS  Google Scholar 

  66. Banerjee SD, Toole BP (1991) Monoclonal antibody to chick embryo hyaluronan-binding protein: changes in distribution of binding protein during early brain development. Dev Biol 146:186–197

    Article  CAS  PubMed  Google Scholar 

  67. Bourguignon LY, Gilad E, Peyrollier K, Brightman A, Swanson RA (2007) Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN gamma kinase activation leading to cytoskeleton function and cell migration in astrocytes. J Neurochem 101:1002–1017

    Article  CAS  PubMed  Google Scholar 

  68. Struve J, Maher PC, Li YQ, Kinney S, Fehlings MG, Kuntz C, Sherman LS (2005) Disruption of the hyaluronan-based extracellular matrix in spinal cord promotes astrocyte proliferation. Glia 52:16–24

    Article  PubMed  Google Scholar 

  69. Shu XZ, Liu Y, Luo Y, Roberts MC, Prestwich GD (2002) Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 3:1304–1311

    Article  CAS  PubMed  Google Scholar 

  70. Horn EM, Beaumont M, Shu XZ, Harvey A, Prestwich GD, Horn KM, Gibson AR, Preul MC, Panitch A (2007) Influence of cross-linked hyaluronic acid hydrogels on neurite outgrowth and recovery from spinal cord injury. J Neurosurg Spine 6:133–140

    Article  PubMed  Google Scholar 

  71. Mortazavi M, Hom D, Martirosyan N, Kushchayev S, Wang X, Verma K, Theodore N, Sonntag VKH, Panitch A, Preul MC (2009) Using hyaluronic acid as a scaffold to promote spinal cord regeneration. Synthes Resident Spine Award: AANS

  72. Fraher JP (1992) The CNS–PNS transitional zone of the rat. Morphometric studies at cranial and spinal levels. Prog Neurobiol 38:261–316

    Article  CAS  PubMed  Google Scholar 

  73. Fraher JP (2000) The transitional zone and CNS regeneration. J Anat 196(Pt 1):137–158

    PubMed  Google Scholar 

  74. Carlstedt T (1997) Nerve fibre regeneration across the peripheral–central transitional zone. J Anat 190:51–56

    Article  PubMed  Google Scholar 

  75. Carlstedt T, Cullheim S, Risling M, Ulfhake B (1989) Nerve fiber regeneration across the PNS-CNS interface at the root-spinal cord junction. Brain Res Bull 22:93–110

    Article  CAS  PubMed  Google Scholar 

  76. Carlstedt T (1985) Dorsal root innervation of spinal cord neurons after dorsal root implantation into the spinal cord of adult rats. Neurosci Lett 55:343–348

    Article  CAS  PubMed  Google Scholar 

  77. Hallin RG, Carlstedt T, Nilsson-Remahl I, Risling M (1999) Spinal cord implantation of avulsed ventral roots in primates; correlation between restored motor function and morphology. Exp Brain Res 124:304–310

    Article  CAS  PubMed  Google Scholar 

  78. Cullheim S, Carlstedt T, Risling M. Axon regeneration of spinal motoneurons following a lesion at the cord-ventral root interface. Spinal Cord 37:811–819

  79. Carlstedt T (1983) Regrowth of anastomosed ventral root nerve fibers in the dorsal root of rats. Brain Res 272:162–165

    Article  CAS  PubMed  Google Scholar 

  80. Blits B, Carlstedt TP, Ruitenberg MJ, de Winter F, Hermens WT, Dijkhuizen PA, Claasens JW, Eggers R, van der Sluis R, Tenenbaum L, Boer GJ, Verhaagen J (2004) Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor. Exp Neurol 189:303–316

    Article  CAS  PubMed  Google Scholar 

  81. Carlstedt T (1991) Experimental studies on surgical treatment of avulsed spinal nerve roots in brachial plexus injury. J Hand Surg Br 16:477–482

    Article  CAS  PubMed  Google Scholar 

  82. Htut M, Misra VP, Anand P, Birch R, Carlstedt T (2007) Motor recovery and the breathing arm after brachial plexus surgical repairs, including re-implantation of avulsed spinal roots into the spinal cord. J Hand Surg Br 32:170–178

    Article  CAS  Google Scholar 

  83. Carlstedt T, Linda H, Cullheim S, Risling M (1986) Reinnervation of hind limb muscles after ventral root avulsion and implantation in the lumbar spinal cord of the adult rat. Acta Physiol Scand 128:645–646

    Article  CAS  PubMed  Google Scholar 

  84. Tator CH (1995) Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 5:407–413

    Article  CAS  PubMed  Google Scholar 

  85. Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26:S2–S12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Shane Tubbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortazavi, M.M., Verma, K., Tubbs, R.S. et al. Cellular and paracellular transplants for spinal cord injury: a review of the literature. Childs Nerv Syst 27, 237–243 (2011). https://doi.org/10.1007/s00381-010-1312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-010-1312-x

Keywords

Navigation