Skip to main content

Advertisement

Log in

Intraoperative neurophysiological monitoring during complex spinal deformity cases in pediatric patients: methodology, utility, prognostication, and outcome

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Complex spinal deformity (CSD) problems in pediatric patients result from a wide variety of congenital, acquired, neoplastic, or traumatic abnormalities that result in a combination of spinal deformity and spinal cord impingement. While these problems are rare, decompression, correction, instrumentation, and fusion are quite hazardous. Intraoperative neurophysiological monitoring (IONM) seems particularly beneficial in these patients.

Methodology

Somatosensory evoked potentials, transcranial electrical motor evoked potentials (MEPs), direct waves, and electromyography were used in a variety of CSD cases over a period when IONM was routine for most spinal cases. Examples of cases in which IONM provided important intraoperative information and significantly affected the course of the operation are illustrated.

Results

IONM is a useful tool particularly in CSD cases in pediatric patients but requires special expertise and anesthetic considerations. Loss of MEP appears to have particularly important adverse prognostic information. Conversely, maintenance of IONM provides significant reassurance that the spinal cord function is being maintained. Preserved but persistently diminished MEPs usually predict a neurological injury that will significantly improve and possibly completely recover. Issues concerning training, certification, oversight, standardization of equipment, and technique are partially but incompletely resolved.

Discussion

IONM is an extremely valuable tool for management of CSD pediatric patients. The utility of IONM is such and the detection of unexpected or unanticipated neurological injury frequent enough that a strong argument that it be used in every spinal surgery case can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amassian VE, Stewart M, Quirk GJ, Rosenthal JL (1987) Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery 20:74–93

    CAS  PubMed  Google Scholar 

  2. Amassian VE, Stewart M (2003) Motor cortical and other cortical interneuronal networks that generate very high frequency waves. Suppl Clin Neurophysiol 56:119–142

    Article  PubMed  Google Scholar 

  3. Anderson DG, Wierzbowski LR, Schwartz DM, Hilibrand AS, Vaccaro AR, Albert TJ (2002) Pedicle screws with high electrical resistance: a potential source of error with stimulus-evoked EMG. Spine 27:1577–1581

    Article  PubMed  Google Scholar 

  4. Antkowiak B (1999) Different actions of general anesthetics on the firing patterns of neocortical neurons mediated by the GABA(A) receptor. Anesthesiology 91:500–511

    Article  CAS  PubMed  Google Scholar 

  5. Ben-David B, Haller G, Taylor P (1987) Anterior spinal fusion complicated by paraplegia. A case report of a false-negative somatosensory-evoked potential. Spine 12:536–539

    Article  CAS  PubMed  Google Scholar 

  6. Ben-David B, Taylor PD, Haller GS (1987) Posterior spinal fusion complicated by posterior column injury. A case report of a false-negative wake-up test. Spine 12:540–543

    Article  CAS  PubMed  Google Scholar 

  7. Bund M, Heine J, Jaeger K (2005) Complications due to patient positioning: anaesthesiological considerations. Anasthesiol Intensivmed Notfallmed Schmerzther 40:329–339

    Article  CAS  PubMed  Google Scholar 

  8. Burke D, Hicks RG (1998) Surgical monitoring of motor pathways. J Clin Neurophysiol 15:194–205

    Article  CAS  PubMed  Google Scholar 

  9. Burke D, Nuwer MR, Daube J, Fischer C, Schramm J, Yingling CD, Jones SJ (1999) Intraoperative monitoring. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:133–148

    CAS  PubMed  Google Scholar 

  10. Calancie B, Madsen P, Lebwohl N (1994) Stimulus-evoked EMG monitoring during transpedicular lumbosacral spine instrumentation. Initial clinical results. Spine 19:2780–2786

    Article  CAS  PubMed  Google Scholar 

  11. Chen Z (2004) The effects of isoflurane and propofol on intraoperative neurophysiological monitoring during spinal surgery. J Clin Monit Comput 18:303–308

    Article  PubMed  Google Scholar 

  12. Cioni B, Meglio M, Rossi GF (1999) Intraoperative motor evoked potentials monitoring in spinal neurosurgery. Arch Ital Biol 137:115–126

    CAS  PubMed  Google Scholar 

  13. Clements DH, Morledge DE, Martin WH, Betz RR (1996) Evoked and spontaneous electromyography to evaluate lumbosacral pedicle screw placement. Spine 21:600–604

    Article  CAS  PubMed  Google Scholar 

  14. Cohen AR, Young W, Ransohoff J (1981) Intraspinal localization of the somatosensory evoked potential. Neurosurgery 9:157–162

    Article  CAS  PubMed  Google Scholar 

  15. Cracco JB, Cracco RQ, Stolove R (1979) Spinal evoked potential in man: a maturational study. Electroencephalogr Clin Neurophysiol 46:58–64

    Article  CAS  PubMed  Google Scholar 

  16. Dawson EG, Sherman JE, Kanim LE, Nuwer MR (1991) Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine 16:S361–S364

    Article  CAS  PubMed  Google Scholar 

  17. de Haan P, Kalkman CJ, Ubags LH, Jacobs MJ, Drummond JC (1996) A comparison of the sensitivity of epidural and myogenic transcranial motor-evoked responses in the detection of acute spinal cord ischemia in the rabbit. Anesth Analg 83:1022–1027

    Article  PubMed  Google Scholar 

  18. de Haan P, Kalkman CJ, Jacobs MJ (1998) Spinal cord monitoring with myogenic motor evoked potentials: early detection of spinal cord ischemia as an integral part of spinal cord protective strategies during thoracoabdominal aneurysm surgery. Semin Thorac Cardiovasc Surg 10:19–24

    PubMed  Google Scholar 

  19. Delecrin J, Nguyen The Tich S, Passuti N, Pereon Y (2000) Neurogenic mixed evoked potential monitoring during scoliosis surgery: retrospective analysis of 149 cases. Rev Chir Orthop Reparatrice Appar Mot 86:46–53

    CAS  PubMed  Google Scholar 

  20. Deletis V (1993) Intraoperative monitoring of the functional integrity of the motor pathways. Adv Neurol 63:201–214

    CAS  PubMed  Google Scholar 

  21. Diaz JH, Lockhart CH (1987) Postoperative quadriplegia after spinal fusion for scoliosis with intraoperative awakening. Anesth Analg 66:1039–1042

    CAS  PubMed  Google Scholar 

  22. Dinner DS, Luders H, Lesser RP, Morris HH, Barnett G, Klem G (1986) Intraoperative spinal somatosensory evoked potential monitoring. J Neurosurg 65:807–814

    Article  CAS  PubMed  Google Scholar 

  23. Djurasovic M, Dimar JR 2nd, Glassman SD, Edmonds HL, Carreon LY (2005) A prospective analysis of intraoperative electromyographic monitoring of posterior cervical screw fixation. J Spinal Disord Tech 18:515–518

    Article  PubMed  Google Scholar 

  24. Dong CC, Macdonald DB, Akagami R, Westerberg B, Alkhani A, Kanaan I, Hassounah M (2005) Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 116:588–596

    Article  PubMed  Google Scholar 

  25. Gillerman R, Duncan J, Bolton J (2000) Prolonged somatosensory evoked potential depression following a brief exposure to low concentrations of inhalation anaesthetic in a 3-year-old child. Paediatr Anaesth 10:336–338

    Article  CAS  PubMed  Google Scholar 

  26. Gilmore RL, Bass NH, Wright EA, Greathouse D, Stanback K, Norvell E (1985) Developmental assessment of spinal cord and cortical evoked potentials after tibial nerve stimulation: effects of age and stature on normative data during childhood. Electroencephalogr Clin Neurophysiol 62:241–251

    Article  CAS  PubMed  Google Scholar 

  27. Ginsburg HH, Shetter AG, Raudzens PA (1985) Postoperative paraplegia with preserved intraoperative somatosensory evoked potentials. Case report. J Neurosurg 63:296–300

    Article  CAS  PubMed  Google Scholar 

  28. Harner SG, Daube JR, Ebersold MJ (1986) Electrophysiologic monitoring of facial nerve during temporal bone surgery. Laryngoscope 96:65–69

    Article  CAS  PubMed  Google Scholar 

  29. Harper CM (2004) Intraoperative cranial nerve monitoring. Muscle Nerve 29:339–351

    Article  PubMed  Google Scholar 

  30. Holland NR (2002) Intraoperative electromyography. J Clin Neurophysiol 19:444–453

    Article  PubMed  Google Scholar 

  31. Holtz A, Nystrom B, Gerdin B (1988) Regulation of spinal cord blood flow in the rat as measured by quantitative autoradiography. Acta Physiol Scand 133:485–493

    Article  CAS  PubMed  Google Scholar 

  32. Journee HL, Polak HE, De Kleuver M (2007) Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses. Neurophysiol Clin 37:423–430

    Article  PubMed  Google Scholar 

  33. Kakinohana M, Fuchigami T, Nakamura S, Kawabata T, Sugahara K (2002) Propofol reduces spinal motor neuron excitability in humans. Anesth Analg 94:1586–1588, table of contents

    Article  CAS  PubMed  Google Scholar 

  34. Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG (1992) Effects of propofol, etomidate, midazolam, and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 76:502–509

    Article  CAS  PubMed  Google Scholar 

  35. Kelleher MO, Tan G, Sarjeant R, Fehlings MG (2008) Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine 8:215–221

    Article  PubMed  Google Scholar 

  36. Koh TH, Eyre JA (1988) Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex. Arch Dis Child 63:1347–1352

    Article  CAS  PubMed  Google Scholar 

  37. Kombos T, Suess O, Ciklatekerlio O, Brock M (2001) Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex. J Neurosurg 95:608–614

    Article  CAS  PubMed  Google Scholar 

  38. Kombos T, Suess O, Brock M (2002) Cost analysis of intraoperative neurophysiological monitoring (IOM). Zentralbl Neurochir 63:141–145

    Article  CAS  PubMed  Google Scholar 

  39. Kombos T, Suess O, Da Silva C, Ciklatekerlio O, Nobis V, Brock M (2003) Impact of somatosensory evoked potential monitoring on cervical surgery. J Clin Neurophysiol 20:122–128

    Article  PubMed  Google Scholar 

  40. Kothbauer K, Schmid UD, Seiler RW, Eisner W (1994) Intraoperative motor and sensory monitoring of the cauda equina. Neurosurgery 34:702–707, discussion 707

    Article  CAS  PubMed  Google Scholar 

  41. Kottenberg-Assenmacher E, Armbruster W, Bornfeld N, Peters J (2003) Hypothermia does not alter somatosensory evoked potential amplitude and global cerebral oxygen extraction during marked sodium nitroprusside-induced arterial hypotension. Anesthesiology 98:1112–1118

    Article  CAS  PubMed  Google Scholar 

  42. Larson SJ, Sances A Jr, Christenson PC (1966) Evoked somatosensory potentials in man. Arch Neurol 15:88–93

    CAS  PubMed  Google Scholar 

  43. Laureau E, Marciniak B, Hebrard A, Herbaux B, Guieu JD (1999) Comparative study of propofol and midazolam effects on somatosensory evoked potentials during surgical treatment of scoliosis. Neurosurgery 45:69–74, discussion 75

    Article  CAS  PubMed  Google Scholar 

  44. Lee JY, Hilibrand AS, Lim MR, Zavatsky J, Zeiller S, Schwartz DM, Vaccaro AR, Anderson DG, Albert TJ (2006) Characterization of neurophysiologic alerts during anterior cervical spine surgery. Spine 31:1916–1922

    Article  PubMed  Google Scholar 

  45. Legatt AD, Schroeder CE, Gill B, Goodrich JT (1992) Electrical stimulation and multichannel EMG recording for identification of functional neural tissue during cauda equina surgery. Childs Nerv Syst 8:185–189

    Article  CAS  PubMed  Google Scholar 

  46. Leppanen RE, Sears C, Maguire J, Wallace S, Captain J (1999) Intraoperative collision studies demonstrate descending spinal cord stimulated evoked potentials and ascending somatosensory evoked potentials are mediated through common pathways. Clin Neurophysiol 16:170

    Google Scholar 

  47. Lesser RP, Raudzens P, Luders H, Nuwer MR, Goldie WD, Morris HH 3rd, Dinner DS, Klem G, Hahn JF, Shetter AG et al (1986) Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 19:22–25

    Article  CAS  PubMed  Google Scholar 

  48. Lieberman JA, Lyon R, Feiner J, Diab M, Gregory GA (2006) The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg 103:316–321, table of contents

    Article  CAS  PubMed  Google Scholar 

  49. Lubicky JP, Spadaro JA, Yuan HA, Fredrickson BE, Henderson N (1989) Variability of somatosensory cortical evoked potential monitoring during spinal surgery. Spine 14:790–798

    Article  CAS  PubMed  Google Scholar 

  50. Lyon R, Feiner J, Lieberman JA (2005) Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. J Neurosurg Anesthesiol 17:13–19

    PubMed  Google Scholar 

  51. Lyon R (2007) Multiple channel TcMEP recordings to evaluate selective root damage leading to radiculopathy. American Society of Neurophysiological Monitoring Regional Symposia—Advanced Intraoperative Monitoring, San Francisco

  52. MacEwen GD, Bunnell WP, Sriram K (1975) Acute neurological complications in the treatment of scoliosis. A report of the Scoliosis Research Society. J Bone Joint Surg Am 57:404–408

    CAS  PubMed  Google Scholar 

  53. McCann ME, Brustowicz RM, Bacsik J, Sullivan L, Auble SG, Laussen PC (2002) The bispectral index and explicit recall during the intraoperative wake-up test for scoliosis surgery. Anesth Analg 94:1474–1478

    Article  PubMed  Google Scholar 

  54. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227

    Article  CAS  PubMed  Google Scholar 

  55. Minahan RE, Sepkuty JP, Lesser RP, Sponseller PD, Kostuik JP (2001) Anterior spinal cord injury with preserved neurogenic ‘motor’ evoked potentials. Clin Neurophysiol 112:1442–1450

    Article  CAS  PubMed  Google Scholar 

  56. Mochida K, Komori H, Okawa A, Shinomiya K (1997) Evaluation of motor function during thoracic and thoracolumbar spinal surgery based on motor-evoked potentials using train spinal stimulation. Spine 22:1385–1393

    Article  CAS  PubMed  Google Scholar 

  57. Neuloh G, Pechstein U, Cedzich C, Schramm J (2004) Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 54:1061–1070, discussion 1070–1062

    Article  PubMed  Google Scholar 

  58. Nezu A, Kimura S, Uehara S, Kobayashi T, Tanaka M, Saito K (1997) Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application. Brain Dev 19:176–180

    Article  CAS  PubMed  Google Scholar 

  59. Nuwer MR, Daube J, Fischer C, Schramm J, Yingling CD (1993) Neuromonitoring during surgery. Report of an IFCN Committee. Electroencephalogr Clin Neurophysiol 87:263–276

    Article  CAS  PubMed  Google Scholar 

  60. Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96:6–11

    Article  CAS  PubMed  Google Scholar 

  61. Papastefanou SL, Henderson LM, Smith NJ, Hamilton A, Webb JK (2000) Surface electrode somatosensory-evoked potentials in spinal surgery: implications for indications and practice. Spine 25:2467–2472

    Article  CAS  PubMed  Google Scholar 

  62. Paradiso G, Lee GY, Sarjeant R, Hoang L, Massicotte EM, Fehlings MG (2006) Multimodality intraoperative neurophysiologic monitoring findings during surgery for adult tethered cord syndrome: analysis of a series of 44 patients with long-term follow-up. Spine 31:2095–2102

    Article  PubMed  Google Scholar 

  63. Pelosi L, Lamb J, Grevitt M, Mehdian SM, Webb JK, Blumhardt LD (2002) Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol 113:1082–1091

    Article  PubMed  Google Scholar 

  64. Phillips LH 2nd, Jane JA (1996) Electrophysiologic monitoring during tethered spinal cord release. Clin Neurosurg 43:163–174

    PubMed  Google Scholar 

  65. Prass RL, Luders H (1986) Acoustic (loudspeaker) facial electromyographic monitoring: part 1. Evoked electromyographic activity during acoustic neuroma resection. Neurosurgery 19:392–400

    Article  CAS  PubMed  Google Scholar 

  66. Prior PF (1985) EEG monitoring and evoked potentials in brain ischaemia. Br J Anaesth 57:63–81

    Article  CAS  PubMed  Google Scholar 

  67. Quinones-Hinojosa A, Gadkary CA, Gulati M, von Koch CS, Lyon R, Weinstein PR, Yingling CD (2004) Neurophysiological monitoring for safe surgical tethered cord syndrome release in adults. Surg Neurol 62:127–133, discussion 133–125

    Article  PubMed  Google Scholar 

  68. Raynor BL, Lenke LG, Kim Y, Hanson DS, Wilson-Holden TJ, Bridwell KH, Padberg AM (2002) Can triggered electromyograph thresholds predict safe thoracic pedicle screw placement? Spine 27:2030–2035

    Article  PubMed  Google Scholar 

  69. Romstock J, Strauss C, Fahlbusch R (2000) Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg 93:586–593

    Article  CAS  PubMed  Google Scholar 

  70. Rose RD (1996) Sensory component of cervically evoked motor potentials. Med Hypotheses 46:577–579

    Article  CAS  PubMed  Google Scholar 

  71. Rubinstein A, Arbit E (1990) Spinal cord blood flow in the rat under normal physiological conditions. Neurosurgery 27:882–886

    Article  CAS  PubMed  Google Scholar 

  72. Russell GB (1995) Neuropathophysiology. In: RL RGB (ed) The basics primer of intraoperative neurophysiological neuromonitoring. Butterworth-Heinemann, Boston

    Google Scholar 

  73. Sala F, Krzan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18:264–287

    PubMed  Google Scholar 

  74. Sala F, Dvorak J, Faccioli F (2007) Cost effectiveness of multimodal intraoperative monitoring during spine surgery. Eur Spine J 16(Suppl 2):S229–S231

    Article  PubMed  Google Scholar 

  75. Salvian AJ, Taylor DC, Hsiang YN, Hildebrand HD, Litherland HK, Humer MF, Teal PA, MacDonald DB (1997) Selective shunting with EEG monitoring is safer than routine shunting for carotid endarterectomy. Cardiovasc Surg 5:481–485

    Article  CAS  PubMed  Google Scholar 

  76. Sawyer RJ, Richmond MN, Hickey JD, Jarrratt JA (2000) Peripheral nerve injuries associated with anaesthesia. Anaesthesia 55:980–991

    Article  CAS  PubMed  Google Scholar 

  77. Schwartz DM, Auerbach JD, Dormans JP, Flynn J, Drummond DS, Bowe JA, Laufer S, Shah SA, Bowen JR, Pizzutillo PD, Jones KJ (2007) Neurophysiological detection of impending spinal cord injury during scoliosis surgery. J Bone Joint Surg Am 89:2440–2449

    Article  PubMed  Google Scholar 

  78. Shi YB, Binette M, Martin WH, Pearson JM, Hart RA (2003) Electrical stimulation for intraoperative evaluation of thoracic pedicle screw placement. Spine 28:595–601

    Article  PubMed  Google Scholar 

  79. Skinner SA, Nagib M, Bergman TA, Maxwell RE, Msangi G (2005) The initial use of free-running electromyography to detect early motor tract injury during resection of intramedullary spinal cord lesions. Neurosurgery 56:299–314, discussion 299–314

    Article  PubMed  Google Scholar 

  80. Sloan T (1997) Evoked potentials. In: MS A (ed) A textbook of neuroanesthesia with neurosurgical and neuroscience perspectives. McGraw-Hill, New York, pp 221–276

    Google Scholar 

  81. Sloan TB, Heyer EJ (2002) Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 19:430–443

    Article  PubMed  Google Scholar 

  82. Standring S (2004) Gray’s anatomy: the anatomical basis of medicine and surgery. Churchill-Livingstone, Edinburgh

    Google Scholar 

  83. Stecker MM, Robertshaw J (2006) Factors affecting reliability of interpretations of intra-operative evoked potentials. J Clin Monit Comput 20:47–55

    Article  PubMed  Google Scholar 

  84. Szelenyi A, Bueno de Camargo A, Deletis V (2003) Neurophysiological evaluation of the corticospinal tract by D-wave recordings in young children. Childs Nerv Syst 19:30–34

    PubMed  Google Scholar 

  85. Toleikis JR, Skelly JP, Carlvin AO, Burkus JK (2000) Spinally elicited peripheral nerve responses are sensory rather than motor. Clin Neurophysiol 111:736–742

    Article  CAS  PubMed  Google Scholar 

  86. Toleikis JR, Skelly JP, Carlvin AO, Toleikis SC, Bernard TN, Burkus JK, Burr ME, Dorchak JD, Goldman MS, Walsh TR (2000) The usefulness of electrical stimulation for assessing pedicle screw placements. J Spinal Disord 13:283–289

    Article  CAS  PubMed  Google Scholar 

  87. Ubags LH, Kalkman CJ, Been HD, Drummond JC (1997) Differential effects of nitrous oxide and propofol on myogenic transcranial motor evoked responses during sufentanil anaesthesia. Br J Anaesth 79:590–594

    CAS  PubMed  Google Scholar 

  88. Ulkatan S, Neuwirth M, Bitan F, Minardi C, Kokoszka A, Deletis V (2006) Monitoring of scoliosis surgery with epidurally recorded motor evoked potentials (D wave) revealed false results. Clin Neurophysiol 117:2093–2101

    Article  CAS  PubMed  Google Scholar 

  89. von Koch CS, Quinones-Hinojosa A, Gulati M, Lyon R, Peacock WJ, Yingling CD (2002) Clinical outcome in children undergoing tethered cord release utilizing intraoperative neurophysiological monitoring. Pediatr Neurosurg 37:81–86

    Article  Google Scholar 

  90. Wiedemayer H, Fauser B, Sandalcioglu IE, Schafer H, Stolke D (2002) The impact of neurophysiological intraoperative monitoring on surgical decisions: a critical analysis of 423 cases. J Neurosurg 96:255–262

    Article  PubMed  Google Scholar 

  91. Wiedemayer H, Sandalcioglu IE, Armbruster W, Regel J, Schaefer H, Stolke D (2004) False negative findings in intraoperative SEP monitoring: analysis of 658 consecutive neurosurgical cases and review of published reports. J Neurol Neurosurg Psychiatry 75:280–286

    CAS  PubMed  Google Scholar 

  92. Wilson-Holden TJ, VanSickle D, Lenke LG (2002) The benefit of neurogenic mixed evoked potentials for intraoperative spinal cord monitoring during correction of severe scoliosis: a case study. Spine 27:E258–E265

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Drake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drake, J., Zeller, R., Kulkarni, A.V. et al. Intraoperative neurophysiological monitoring during complex spinal deformity cases in pediatric patients: methodology, utility, prognostication, and outcome. Childs Nerv Syst 26, 523–544 (2010). https://doi.org/10.1007/s00381-010-1115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-010-1115-0

Keywords

Navigation