Skip to main content

Advertisement

Log in

Image guidance and neuromonitoring in neurosurgery

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

The localization of tumors and epileptogenic foci within the somatosensory or language cortex of the brain of a child poses unique neurosurgical challenges. In the past, lesions in these regions were not treated aggressively for fear of inducing neurological deficits. As a result, while function may have been preserved, the underlying disease may not have been optimally treated, and repeat neurosurgical procedures were frequently required. Today, with the advent of preoperative brain mapping, image guidance or neuronavigation, and intraoperative monitoring, peri-Rolandic and language cortex lesions can be approached directly and definitively with a high degree of confidence that neurosurgical function will be maintained.

Methods and results

The preoperative brain maps can now be achieved with magnetic resonance imaging (MRI), functional MRI, magnetoencephalography, and diffusion tensor imaging. Image guidance systems have improved significantly and include the use of the intraoperative MRI. Somatosensory, motor, and brainstem auditory-evoked potentials are used as standard neuromonitoring techniques in many centers around the world. Added to this now is the use of continuous train-of-five monitoring of the integrity of the corticospinal tract while operating in the peri-Rolandic region.

Conclusion

We are in an era where continued advancements can be expected in mapping additional pathways such as visual, memory, and hearing pathways. With these new advances, neurosurgeons can expect to significantly improve their surgical outcomes further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Article  CAS  PubMed  Google Scholar 

  2. Benke T, Köylü B, Visani P, Karner E, Brenneis C, Bartha L, Trinka E, Trieb T, Felber S, Bauer G, Chemelli A, Willmes K (2006) Language lateralization in temporal lobe epilepsy: a comparison between fMRI and the Wada test. Epilepsia 47(8):1308–1319

    Article  PubMed  Google Scholar 

  3. Berger M (1995) Functional mapping-guided resection of low grade gliomas. Clin Neurosurg 42:437–452

    CAS  PubMed  Google Scholar 

  4. Berman JI, Berger MS, Mukherjee P, Henry RG (2004) Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 101:66–72

    Article  PubMed  Google Scholar 

  5. Black PM, Moriarty T, Alexander E III, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41(4):831–845

    Article  CAS  PubMed  Google Scholar 

  6. Bowyer SM, Moran JE, Weiland BJ, Mason KM, Greenwald ML, Smith BJ, Barkley GL, Tepley N (2005) Language laterality determined by MEG mapping with MR-FOCUSS. Epilepsy Behav 6:235–241

    Article  PubMed  Google Scholar 

  7. Breier JI, Simos PG, Zouridakis G, Papanicolaou AC (2000) Lateralization of activity associated with language function using magnetoencephalography: a reliability study. J Clin Neurophysiol 17:503–510

    Article  CAS  PubMed  Google Scholar 

  8. Breier JI, Simos PG, Zouridakis G, Wheless JW, Willmore LJ, Constantinou JE, Maggio WW, Papanicolaou AC (1999) Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology 53:938–945

    CAS  PubMed  Google Scholar 

  9. Buchfelder M, Ganslandt O, Fahlbusch R, Nimsky C (2000) Intraoperative magnetic resonance imaging in epilepsy surgery. J Magn Reson Imaging 12:547–555

    Article  CAS  PubMed  Google Scholar 

  10. BuchfelderM FR, Ganslandt O, Stefan H, Nimsky C (2002) Use of intraoperative magnetic resonance imaging in tailored temporal lobe surgeries for epilepsy. Epilepsia 43:864–873

    Article  Google Scholar 

  11. Bucholz RD, Yeh DD, Trobaugh J, McDurmont LL, Sturm CD, Baumann C,Henderson JM, Levy A, Kessman P (1997) The correction of stereotactic inaccuracy caused by brain shift using an intraoperative ultrasound device. In: Troccas J, Grimson E, Mösges AJ (eds) CVRMed-MRCAS’97: First Joint Conference Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery. Springer Verlag, Grenoble, pp 459–466

  12. Carter TJ, Sermesant M, Cash DM, Barratt DC, Tanner C, Hawkes DJ (2005) Application of soft tissue modelling to image-guided surgery. Med Eng Phys 27(10):893–909

    Article  PubMed  Google Scholar 

  13. Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107

    Article  PubMed  Google Scholar 

  14. Ciccarelli O, Parker GJ, Toosy AT, Wheeler-Kingshott CA, Barker GJ, Boulby PA, Miller DH, Thompson AJ (2003) From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 18:348–359

    Article  CAS  PubMed  Google Scholar 

  15. Clark CA, Barrick TR, Murphy MM, Bell BA (2003) White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning? Neuroimage 20:1601–1608

    Article  PubMed  Google Scholar 

  16. Comeau RM, Sadikot AF, Fenster A, Peters TM (2000) Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med Phys 27:787–800

    Article  CAS  PubMed  Google Scholar 

  17. Contura TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427

    Article  Google Scholar 

  18. Danks RA, Aglio LS, Gugino LD, Black PM (2000) Craniotomy under local anesthesia and monitored conscious sedation for the resection of tumors involving eloquent cortex. J Neurooncol 49(2):131–139

    Article  CAS  PubMed  Google Scholar 

  19. Danks RA, Rogers M, Aglio LS, Gugino LD, Black PM (1998) Patient tolerance of craniotomy performed with the patient under local anesthesia and monitored conscious sedation. Neurosurgery 42(1):28–34

    Article  CAS  PubMed  Google Scholar 

  20. Emerson RG, Turner CA (1993) Monitoring during supratentorial surgery. J Clin Neurophysiol 10(4):404–411

    Article  CAS  PubMed  Google Scholar 

  21. Fox PT, Raichle ME (2006) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83(4):1140–1144

    Article  Google Scholar 

  22. Gallen CC, Schwartz BJ, Bucholz RD, Malik G, Barkley GL, Smith J, Tung H, Copeland B, Bruno L, Assam S, Hirschkoff E, Bloom F (1995) Presurgical localization of frontal cortex using magnetic source imaging. J Neurosurg 82:988–994

    Article  CAS  PubMed  Google Scholar 

  23. Gallen CC, Sobel DF, Waltz T, Aung M, Copeland B, Schwartz BJ, Hirschkoff EC, Bloom FE (1993) Noninvasive presurgical neuromagnetic mapping of somatosensory cortex. Neurosurgery 33(2):260–268

    Article  CAS  PubMed  Google Scholar 

  24. Ganslandt O, Stadlbauer A, Fahlbusch R, Kamada K, Buslei R, Blumcke I, Moser E, Nimsky C (2005) Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery 56(2 Suppl):291–298

    Article  PubMed  Google Scholar 

  25. Gasser T, Ganslandt O, Sandalcioglu E, Stolke D, Fahlbusch R, Nimsky C (2005) Intraoperative functional MRI: implementation and preliminary experience. Neuroimage 26(3):685–693

    Article  PubMed  Google Scholar 

  26. Grondin R, Chuang S, Otsubo H, Holowka S, Snead OC III, Raybaud C, Rutka JT (2006) The role of magnetoencephalography in pediatric epilepsy surgery. Childs Nerv Syst 2(8):779–785

    Article  Google Scholar 

  27. Haglund M, Berger M (1996) Functional mapping of motor, sensory, and language pathways during low-grade glioma removal. Tech Neurosurg 2:141–149

    Google Scholar 

  28. Hagmann P, Thiran JP, Jonasson L, Vandergheynst P, Clarke S, Maeder P, Meuli R (2003) DTI mapping of human brain connectivity: statistical fiber tracking and virtual dissection. Neuroimage 19:545–554

    Article  CAS  PubMed  Google Scholar 

  29. Hammoud MA, Ligon BL, el Souki R, Shi WM, Schomer DF, Sawaya R (1996) Use of intraoperative ultrasound for localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 84:737–741

    Article  CAS  PubMed  Google Scholar 

  30. Hartov A, Roberts DW, Paulsen KD (2008) A comparative analysis of coregistered ultrasound and magnetic resonance imaging in neurosurgery. Neurosurgery 62(3 Suppl 1):91–99

    Article  PubMed  Google Scholar 

  31. Heilman K, Wilder B, Malzone W (1972) Anomic aphasia following anterior temporal lobectomy. Trans Am Neurol Assoc 97:291–293

    Google Scholar 

  32. Hirata M, Kato A, Taniguchi M, Saitoh Y, Ninomiya H, Ihara A, Kishima H, Oshino S, Baba T, Yorifuji S, Yoshimine T (2004) Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. Neuroimage 23:46–53

    Article  PubMed  Google Scholar 

  33. Hirsch J, Ruge MI, Kim KH, Correa DD, Victor JD, Relkin NR, Labar DR, Krol G, Bilsky MH, Souweidane MM, DeAngelis LM, Gutin PH (2000) An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical areas associated with tactile, motor, language, and visual functions. Neurosurgery 47(3):711–721

    Article  CAS  PubMed  Google Scholar 

  34. Isaacson B, Kileny PR, El-Kashlan H, Gadre AK (2000) Intraoperative monitoring and facial nerve outcomes after vestibular schwannoma resection. Otol Neurotol 24(5):812–817

    Article  Google Scholar 

  35. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol 25:356–369

    PubMed  Google Scholar 

  36. Jödicke A, Deinsberger W, Erbe H, Kriete A, Böker DK (1998) Intraoperative three dimensional ultrasonography: an approach to register brain shift using multidimensional image processing. Minim Invasive Neurosurg 41:13–19

    Article  PubMed  Google Scholar 

  37. Kaibara T, Myles ST, Lee MA, Sutherland GR (2002) Optimizing epilepsy surgery with intraoperative MR imaging. Epilepsia 43:425–429

    Article  PubMed  Google Scholar 

  38. Kamada K, Sawamura Y, Takeuchi F, Kawaguchi H, Kuriki S, Todo T, Morita A, Matsutani Y, Aoki S, Kirino T (2005) Functional identification of the primary motor area by corticospinal tractography. Neurosurgery 56:98–109

    Article  PubMed  Google Scholar 

  39. Karataş A, Erdem A, Savaş A, Kutlu G, Yağmurlu B, Erden I, Bilir E (2004) Identification and removal of an epileptogenic lesion using Ictal-EEG, functional-neuronavigation and electrocorticography. J Clin Neurosci 11(3):343–346

    Article  PubMed  Google Scholar 

  40. Kelly JJ, Hader WJ, Myles ST, Sutherland GR (2005) Epilepsy surgery with intraoperative MRI at 1.5 T. Neurosurg Clin N Am 16(1):173–183

    Article  PubMed  Google Scholar 

  41. Kim JS, Chung CK (2008) Language lateralization using MEG beta frequency desynchronization during auditory oddball stimulation with one-syllable words. Neuroimage 42(4):1499–1507

    Article  PubMed  Google Scholar 

  42. Klimek M, Verbrugge SJ, Roubos S, van der Most E, Vincent AJ, Klein J (2004) Awake craniotomy for glioblastoma in a 9-year-old child. Anaesthesia 59(6):607–609

    Article  CAS  PubMed  Google Scholar 

  43. Kolk AM, van Hoof R, Fiedeldij Dop MJ (2000) Preparing children for venepuncture. The effect of an integrated intervention on distress before and during venepuncture. Child Care Health Dev 26:251–260

    Article  CAS  PubMed  Google Scholar 

  44. Kombos T, Suess O, Kern BC, Funk T, Hoell T, Kopetsch O, Brock M (1999) Comparison between monopolar and bipolar electrical stimulation of the motor cortex. Acta Neurochir (Wien) 141(12):1295–1301

    Article  CAS  Google Scholar 

  45. Korvenoja A, Kirveskari E, Aronen HJ, Avikainen S, Brander A, Huttunen J, Ilmoniemi RJ, Jääskeläinen JE, Kovala T, Mäkelä JP, Salli E, Seppä M (2006) Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology 241(1):213–222

    Article  PubMed  Google Scholar 

  46. Kothbauer KF (2007) Intraoperative neurophysiologic monitoring for intramedullary spinal-cord tumor surgery. Neurophysiol Clin 37(6):407–414

    Article  CAS  PubMed  Google Scholar 

  47. Lewine JD, Orrison WW (1995) Magnetoencephalography and magnetic source imaging. In: Orrison WW, Lewine JD, Hartshorne MF (eds) Functional brain imaging. Mosby Yearbook Inc, St Louis, pp 369–417

    Google Scholar 

  48. Low D, Ng I, Ng WH (2007) Awake craniotomy under local anesthesia and monitored conscious sedation for resection of tumors in eloquent cortex—outcomes in 20 patients. Ann Acad Med Singapore 36:326–331

    PubMed  Google Scholar 

  49. Majos A, Tybor K, Stefańczyk L, Góraj B (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15(6):1148–1158

    Article  PubMed  Google Scholar 

  50. Meyer FB, Bates LM, Goerss SJ, Friedman JA, Windschitl WL, Duffy JR, Perkins WJ, O’Neill BP (2001) Awake craniotomy for aggressive resection of primary gliomas located in eloquent brain. Mayo Clin Proc 76:677–687

    Article  CAS  PubMed  Google Scholar 

  51. Miga MI, Roberts DW, Hartov A, Eisner S, Lemery J, Kennedy FE, Paulsen KD (1999) Updated neuroimaging using intraoperative brain modeling and sparse data. Stereotact Funct Neurosurg 72(2–4):103–106

    Article  CAS  PubMed  Google Scholar 

  52. Minassian BA, Otsubo H, Weiss S, Elliott I, Rutka JT, Snead OC III (1999) Magnetoencephalographic localization in pediatric epilepsy surgery: comparison with invasive intracranial electroencephalography. Ann Neurol 46(4):627–633

    Article  CAS  PubMed  Google Scholar 

  53. Morota N, Deletis V, Constantini S, Kofler M, Cohen H, Epstein FJ (1997) The role of motor evoked potentials during surgery for intramedullary spinal cord tumors. Neurosurgery 41(6):1327–1336

    Article  CAS  PubMed  Google Scholar 

  54. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Tsuruda J, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445

    CAS  PubMed  Google Scholar 

  55. Mueller WM, Yetkin FZ, Hammeke TA, Morris GL, Swanson SJ, Reichert K, Cox R, Haughton VM (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39:515–520

    Article  CAS  PubMed  Google Scholar 

  56. Muragaki Y, Iseki H, Maruyama T, Kawamata T, Yamane F, Nakamura R, Kubo O, Takakura K, Hori T (2006) Usefulness of intraoperative magnetic resonance imaging for glioma surgery. Acta Neurochir Suppl 98:67–75

    Article  CAS  PubMed  Google Scholar 

  57. Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM 3rd, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48:787–798

    Article  CAS  PubMed  Google Scholar 

  58. Nauta HJ, Bonnen JG, Bogner MS, Charles ST, Grundfest WS, Harrington JA (1998) Problem of intraoperative anatomical shift in image-guided surgery. SPIE Proc Ser 3262:229–233

    Article  Google Scholar 

  59. Ng WH, Cheong DL, Khu KJ, Venkatesh G, Ng YK, Lim CC (2008) Diffusion tensor tractography: corticospinal tract fiber reduction is associated with temporary hemiparesis in benign extracerebral lesions. Neurosurgery 63(3):452–458

    Article  PubMed  Google Scholar 

  60. Nimsky C, Fujita A, Ganslandt O, Von Keller B, Fahlbusch R (2004) Volumetric assessment of glioma removal by intraoperative high-field magnetic resonance imaging. Neurosurgery 55(2):358–370

    Article  PubMed  Google Scholar 

  61. Nimsky C, Ganslandt O, Buchfelder M, Fahlbusch R (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 28(5):482–487

    Article  PubMed  Google Scholar 

  62. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47:1070–1080

    Article  CAS  PubMed  Google Scholar 

  63. Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R (2005) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56(1):130–138

    PubMed  Google Scholar 

  64. Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R (2005) Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures—initial experience. Radiology 234(1):218–225

    Article  PubMed  Google Scholar 

  65. Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R (2006) Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage 30(4):1219–1229

    Article  PubMed  Google Scholar 

  66. Ojemann G, Ojemann J, Lettich E, Berger M (1989) Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. J Neurosurg 71:316–326

    Article  CAS  PubMed  Google Scholar 

  67. Papanicolaou AC (1995) An introduction to magnetoencephalography with some applications. Brain Cogn 27(3):331–352

    Article  CAS  PubMed  Google Scholar 

  68. Papanicolaou AC, Simos PG, Castillo EM, Breier JI, Sarkari S, Pataraia E, Billingsley RL, Buchanan S, Wheless J, Maggio V, Maggio WW (2004) Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 100:867–876

    Article  PubMed  Google Scholar 

  69. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electric stimulation. Brain 60:389–443

    Article  Google Scholar 

  70. Rasmussen IA Jr, Lindseth F, Rygh OM, Berntsen EM, Selbekk T, Xu J, Nagelhus Hernes TA, Harg E, Håberg A, Unsgaard G (2007) Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien) 149(4):365–378

    Article  Google Scholar 

  71. Roessler K, Donat M, Lanzenberger R, Novak K, Geissler A, Gartus A, Tahamtan AR, Milakara D, Czech T, Barth M, Knosp E, Beisteiner R (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76:1152–1157

    Article  CAS  PubMed  Google Scholar 

  72. Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52(6):1335–1345

    Article  PubMed  Google Scholar 

  73. Rowley HA, Roberts TP (1995) Functional localization by magnetoencephalography. Neuroimaging Clin N Am 5(4):695–710

    CAS  PubMed  Google Scholar 

  74. Sala F, Krzan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18:264–287

    PubMed  Google Scholar 

  75. Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58(6):1129–1143

    Article  PubMed  Google Scholar 

  76. Salmelin R (2007) Clinical neurophysiology of language: the MEG approach. Clin Neurophysiol 118(2):237–254

    Article  PubMed  Google Scholar 

  77. Schwartz TH, Marks D, Pak J, Hill J, Mandelbaum DE, Holodny AI, Schulder M (2002) Standardization of amygdalohippocampectomy with intraoperative magnetic resonance imaging: preliminary experience. Epilepsia 43:430–436

    Article  PubMed  Google Scholar 

  78. Serletis D, Bernstein M (2007) Prospective study of awake craniotomy used routinely and nonselectively for supratentorial tumors. J Neurosurg 107(1):1–6

    Article  PubMed  Google Scholar 

  79. Shinoura N, Suzuki Y, Yamada R, Kodama T, Takahashi M, Yagi K (2005) Fibers connecting the primary motor and sensory areas play a role in grasp stability of the hand. Neuroimage 25:936–941

    Article  PubMed  Google Scholar 

  80. Soza G, Grosso R, Labsik U, Nimsky C, Fahlbusch R, Greiner G, Hastreiter P (2003) Fast and adaptive finite element approach for modeling brain shift. Comput Aided Surg 8(5):241–246

    Article  PubMed  Google Scholar 

  81. Steinmeier R, Fahlbusch R, Ganslandt O, Nimsky C, Buchfelder M, Kaus M, Heigl T, Lenz G, Kuth R, Huk W (1998) Intraoperative magnetic resonance imaging with the Magnetom open scanner: concepts, neurosurgical indications, and procedures. A preliminary report. Neurosurgery 43(4):739–748

    Article  CAS  PubMed  Google Scholar 

  82. Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91:804–813

    Article  CAS  PubMed  Google Scholar 

  83. Taniguchi M, Cedzich C, Schramm J (1993) Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 32:219–226

    Article  CAS  PubMed  Google Scholar 

  84. Taniguchi M, Nadstawek J, Pechstein U, Schramm J (1992) Total intravenous anesthesia for improvement of intraoperative monitoring of somatosensory evoked potentials during aneurysm surgery. Neurosurgery 31(5):891–897

    Article  CAS  PubMed  Google Scholar 

  85. Tharin S, Golby A (2007) Functional brain mapping and its applications to neurosurgery. Neurosurgery 60(4 Suppl 2):185–201

    PubMed  Google Scholar 

  86. Tobias JD, Jimenez DF (1997) Anaesthetic management during awake craniotomy in a 12-year-old boy. Paediatr Anaesth 7(4):341–344

    Article  CAS  PubMed  Google Scholar 

  87. Tovar-Spinoza ZS, Ochi A, Rutka JT, Go C, Otsubo H (2008) The role of magnetoencephalography in epilepsy surgery. Neurosurg Focus 25(3):E16

    Article  PubMed  Google Scholar 

  88. Tronnier VM, Bonsanto MM, Staubert A, Knauth M, Kunze S, Wirtz CR (2001) Comparison of intraoperative MR imaging and 3D-navigated ultrasonography in the detection and resection control of lesions. Neurosurg Focus 10(2):E3

    Article  CAS  PubMed  Google Scholar 

  89. Tronnier VM, Wirtz CR, Knauth M, Lenz G, Pastyr O, Bonsanto MM, Albert FK, Kuth R, Staubert A, Schlegel W, Sartor K, Kunze S (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 40(5):891–902

    Article  CAS  PubMed  Google Scholar 

  90. Tucker A, Slattery WH 3rd, Solcyk L, Brackmann DE (2001) Intraoperative auditory assessments as predictors of hearing preservation after vestibular schwannoma surgery. J Am Acad Audiol 12(9):471–477

    CAS  PubMed  Google Scholar 

  91. Walker DG, Talos F, Bromfield EB, Black PM (2002) Intraoperative magnetic resonance for the surgical treatment of lesions producing seizures. J Clin Neurosci 9(5):515–520

    Article  PubMed  Google Scholar 

  92. Yamakami I, Yoshinori H, Saeki N, Wada M, Oka N (2009) Hearing preservation and intraoperative auditory brainstem response and cochlear nerve compound action potential monitoring in the removal of small acoustic neurinoma via the retrosigmoid approach. J Neurol Neurosurg Psychiatry 80(2):218–227

    Article  CAS  PubMed  Google Scholar 

  93. Yetkin FZ, Mueller WM, Morris GL, McAuliffe TL, Ulmer JL, Cox RW, Daniels DL, Haughton VM (1997) Functional MR activation correlated with intraoperative cortical mapping. AJNR Am J Neuroradiol 18(7):1311–1315

    CAS  PubMed  Google Scholar 

  94. Yu CS, Li KC, Xuan Y, Ji XM, Qin W (2005) Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. Eur J Radiol 56:197–204

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was made possible through funds from the Wiley Fund and Jack Beqaj Fund at the Hospital for Sick Children in Toronto. WH Ng is funded by the Singapore Health Services Health Manpower Development Programme (HMDP) Fellowship and National Neuroscience Institute Scholarship (Singapore).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Rutka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, W.H., Mukhida, K. & Rutka, J.T. Image guidance and neuromonitoring in neurosurgery. Childs Nerv Syst 26, 491–502 (2010). https://doi.org/10.1007/s00381-010-1083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-010-1083-4

Keywords

Navigation