Skip to main content

Advertisement

Log in

Differential expression profiling between atypical teratoid/rhabdoid and medulloblastoma tumor in vitro and in vivo using microarray analysis

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objectives

Atypical teratoid/rhabdoid tumor (AT/RT) and medulloblastoma (MB) are the most malignant primary brain tumors in early childhood. AT/RT is frequently misdiagnosed as primitive neuroectodermal tumor/medulloblastoma. The biological features and clinical outcomes of AT/RT and MB are extremely different. In this study, we used microarray as a platform to distinguish these two tumors with the definitive diagnostic marker as well as the profiling of expression genes.

Methods

In order to clarify the pathogenesis and find the biological markers for AT/RT, we established a derivative AT/RT primary cell culture. The differential profiling between AT/RT and MB were analyzed by using microarray method.

Results

With the use of the microarray method, we demonstrated that 15 genes were significantly changed (at least 5-fold in upregulation and 1/5-fold in downregulation) between AT/RT and MB in tissues and cell lines. The quantitative reverse transcription-polymerase chain reaction analyses further confirmed that mRNA expression levels of SERPINI1 and osteopontin were highly expressed in AT/RT cells and tissues than those in MB. Importantly, our microarray result suggested that AT/RT presents the stemness-like pattern and expression profiling of embryonic stem cells as well as high mRNA expressions of Oct-4, Nanog, Sox-2, and c-Myc.

Conclusions

Our study demonstrated the differential gene expression profiling between AT/RT and MB. Based on the microarray findings, AT/RTs present embryonic stem-like gene recapitulation and further provide novel insights into their underlying biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rorke LB, Packer RJ, Biegel JA (1996) Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J Neurosurg 85:56–65

    Article  CAS  PubMed  Google Scholar 

  2. Burger PC, Yu IT, Tihan T et al (1998) Atypical teratoid/rhabdoid tumor of the central nervous system: a highly malignant tumor of infancy and childhood frequently mistaken for medulloblastoma: a Pediatric Oncology Group study. Am J Surg Pathol 22:1083–1092

    Article  CAS  PubMed  Google Scholar 

  3. Tekautz TM, Fuller CE, Blaney S et al (2005) Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J Clin Oncol 23:1491–1499

    Article  CAS  PubMed  Google Scholar 

  4. Hilden JM, Meerbaum S, Burger P et al (2004) Central nervous system atypical teratoid/rhabdoid tumor: results of therapy in children enrolled in a registry. J Clin Oncol 22:2877–2884

    Article  PubMed  Google Scholar 

  5. Chen YW, Wong TT, Ho DM et al (2006) Impact of radiotherapy for pediatric CNS atypical teratoid/rhabdoid tumor (single institute experience). Int J Radiat Oncol Biol Phys 64:1038–1043

    PubMed  Google Scholar 

  6. Parwani AV, Stelow EB, Pambuccian SE et al (2005) Atypical teratoid/rhabdoid tumor of the brain: cytopathologic characteristics and differential diagnosis. Cancer 105:65–70

    Article  PubMed  Google Scholar 

  7. Lopez-Gines C, Cerda-Nicolas M, Kepes J et al (2000) Complex rearrangement of chromosomes 6 and 11 as the sole anomaly in atypical teratoid/rhabdoid tumors of the central nervous system. Cancer Genet Cytogen 122:149–152

    Article  CAS  Google Scholar 

  8. Sawyer JR, Goosen LS, Swanson CM et al (1998) A new reciprocal translocation (12;22)(q24.3;q11.2–12) in a malignant rhabdoid tumor of the brain. Cancer Genet Cytogen 101:62–67

    Article  CAS  Google Scholar 

  9. Biegel JA, Burk CD, Parmiter et al (1992) Molecular analysis of a partial deletion of 22q in a central nervous system rhabdoid tumor. Gene Chromosomes Cancer 5:104–108

    Article  CAS  Google Scholar 

  10. Biegel JA, Allen CS, Kawasaki K et al (1996) Narrowing the critical region for a rhabdoid tumor locus in 22q11. Gene Chromosomes Cancer 16:94–105

    Article  CAS  Google Scholar 

  11. Biegel JA, Zhou JY, Rorke LB et al (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59:74–79

    CAS  PubMed  Google Scholar 

  12. Versteege I, Sevenet N, Lange J et al (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394:203–206

    Article  CAS  PubMed  Google Scholar 

  13. Kao CL, Chiou SH, Ho DM, Chen YJ, Liu RS, Lo CW, Tsai FT, Lin CH, Ku HH, Yu SM, Wong TT (2005) Elevation of plasma and cerebrospinal fluid osteopontin levels in patients with atypical teratoid/rhabdoid tumor. Am J Clin Pathol 123(2):297–304

    Article  CAS  PubMed  Google Scholar 

  14. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800

    Article  CAS  PubMed  Google Scholar 

  15. Wouters BJ, Lowenberg B, Delwel R (2009) A decade of genome-wide gene expression profiling in acute myeloid leukemia: flashback and prospects. Blood 113(2):291–298

    Article  CAS  PubMed  Google Scholar 

  16. Ballman KV (2008) Genetics and genomics: gene expression microarrays. Circulation 118(15):1593–1597

    Article  PubMed  Google Scholar 

  17. Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, Ozbun L, Brady J, Barrett JC, Boyd J et al (2008) A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res 68:5478–5486

    Article  CAS  PubMed  Google Scholar 

  18. Chen YC, Chen YW, Hsu HS, Tseng LM, Huang PI, Lu KH, Chen DT, Tai LK, Yung MC, Chang SC, Ku HH, Chiou SH, Lo WL (2009) Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 385:307–313

    Article  CAS  PubMed  Google Scholar 

  19. Kao CL, Chiou SH, Chen YJ et al (2005) Increased expression of osteopontin gene in atypical teratoid/rhabdoid tumor of the central nervous system. Mod Pathol 18:769–778

    Article  CAS  PubMed  Google Scholar 

  20. Bayani J, Zielenska M, Marrano P, Kwan Ng Y, Taylor MD, Jay V, Rutka JT, Squire JA (2000) Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93:437–448

    Article  CAS  PubMed  Google Scholar 

  21. Boiani M, Scholer HR (2005) Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6:872–884

    Article  CAS  PubMed  Google Scholar 

  22. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    Article  CAS  PubMed  Google Scholar 

  23. Lamb KA, Rizzino A (1998) Effects of differentiation on the transcriptional regulation of the FGF-4 gene: critical roles played by a distal enhancer. Mol Reprod Dev 51:218–224

    Article  CAS  PubMed  Google Scholar 

  24. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  25. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  26. Wang P, Branch DR, Bali M, Schultz GA, Goss PE et al (2003) The POU homeodomain protein OCT3 as a potential transcriptional activator for fibroblast growth factor-4 (FGF-4) in human breast cancer cells. Biochem J 375:199–205

    Article  CAS  PubMed  Google Scholar 

  27. Monk M, Holding C (2001) Human embryonic genes re-expressed in cancer cells. Oncogene 20:8085–8091

    Article  CAS  PubMed  Google Scholar 

  28. Gidekel S, Pizov G, Bergman Y, Pikarsky E (2003) Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4:361–370

    Article  CAS  PubMed  Google Scholar 

  29. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  CAS  PubMed  Google Scholar 

  30. Neuzil J, Stantic M, Zobalova R et al (2007) Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what’s in the name? Biochem Biophys Res Commun 355:855–859

    Article  CAS  PubMed  Google Scholar 

  31. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  CAS  PubMed  Google Scholar 

  32. Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507

    Article  CAS  PubMed  Google Scholar 

  33. Chiou SH, Yu CC, Huang CY et al (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14:4085–4095

    Article  CAS  PubMed  Google Scholar 

  34. Ezeh UI, Turek PJ, Reijo RA et al (2005) Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 104:2255–2265

    Article  CAS  PubMed  Google Scholar 

  35. Gidekel S, Pizov G, Bergman Y et al (2003) Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4:361–370

    Article  CAS  PubMed  Google Scholar 

  36. Osterwalder T, Contartese J, Stoeckli ET, Kuhn TB, Sonderegger P (1996) Neuroserpin, an axonally secreted serine protease inhibitor. EMBO J 15:2944–2953

    CAS  PubMed  Google Scholar 

  37. Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, Lawrence DA (2000) Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 96:569–576

    CAS  PubMed  Google Scholar 

  38. Cinelli P, Madani R, Tsuzuki N, Vallet P, Arras M, Zhao CN, Osterwalder T, Rulicke T, Sonderegger P (2001) Neuroserpin, a neuroprotective factor in focal ischemic stroke. Mol Cell Neurosci 18:443–457

    Article  CAS  PubMed  Google Scholar 

  39. Davis RL, Shrimpton AE, Holohan PD, Bradshaw C, Feiglin D, Collins GH, Sonderegger P, Kinter J, Becker LM, Lacbawan F, Krasnewich D, Muenke M, Lawrence DA, Yerby MS, Shaw CM, Gooptu B, Elliott PR, Finch JT, Carrell RW, Lomas DA (1999) Familial dementia caused by polymerization of mutant neuroserpin. Nature 401:376–379

    CAS  PubMed  Google Scholar 

  40. Miranda E, MacLeod I, Davies MJ, Pérez J, Römisch K, Crowther DC, Lomas DA (2008) The intracellular accumulation of polymeric neuroserpin explains the severity of the dementia FENIB. Hum Mol Genet 17:1527–1539

    Article  CAS  PubMed  Google Scholar 

  41. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, Reinhardt F, Harris LN, Hylander BL, Repasky EA, Weinberg RA (2008) Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell 133:994–1005

    Article  CAS  PubMed  Google Scholar 

  42. Philip S, Bulbule A, Kundu GC (2001) Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem 30:44926–44935

    Article  Google Scholar 

  43. Zhao J, Dong L, Lu B, Wu G, Xu D, Chen J, Li K, Tong X, Dai J, Yao S, Wu M, Guo Y (2008) Down-regulation of osteopontin suppresses growth and metastasis of hepatocellular carcinoma via induction of apoptosis. Gastroenterology 135:956–968

    Article  CAS  PubMed  Google Scholar 

  44. Wong TT, Ho DM, Chang KP et al (2005) Primary pediatric brain tumors: statistics of Taipei VGH, Taiwan (1975–2004). Cancer 104:2156–2167

    Article  PubMed  Google Scholar 

  45. Packer RJ, Biegel JA, Blaney S et al (2002) Atypical teratoid/rhabdoid tumor of the central nervous system: report on workshop. J Pediatr Hematol Oncol 24:337–342

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by research grants from the National Science Council (NSC-97-3111-B-075-001-MY3), Taipei Veterans General Hospital (V96C1-151, V96E1-004, V96ER2-016, V96E2-010), Yen-Tjing-Ling Medical Foundation, Taipei City Hospital (96001-62-014, 96001-62-018, 96002-62-092), National Yang-Ming University (3T-MRI & Genomic Center, Ministry of Education, Aim for the Top University Plan), Technology Development Program for Academia, Department of Industrial Technology, and Ministry of Economic Affairs, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-I Ma.

Additional information

Chung-Lan Kao, Yi-Yen Lee, and Guang-Yuh Chiou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, HI., Kao, CL., Lee, YY. et al. Differential expression profiling between atypical teratoid/rhabdoid and medulloblastoma tumor in vitro and in vivo using microarray analysis. Childs Nerv Syst 26, 293–303 (2010). https://doi.org/10.1007/s00381-009-1016-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-009-1016-2

Keywords

Navigation