Skip to main content
Log in

Cerebellar vermis morphology in children with spina bifida and Chiari type II malformation

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objective

Posterior fossa size and cerebellar weight and volume are reduced in Chiari type II malformation (CII). This is assumed to affect the cerebellum uniformly. We quantified the presumed reduction in vermis size on magnetic resonance imaging (MRI).

Methods

A midsagittal brain MRI slice was selected from each of 68 participants with CII (mean age 13 years). Control participants were 28 typically developing children (mean age 14.1 years). Midsagittal surface areas occupied by the intracranial fossa, posterior fossa, vermis, and its lobules were measured.

Conclusions

Mean posterior fossa area was significantly smaller (P<0.003), although mean vermis area was significantly larger (P<0.0001), in participants with CII than in control participants. This expansion involved vermis lobules I–V and VI–VII areas (P<0.0001). The midsagittal vermis was expanded and not reduced in size in participants with CII. This is attributed to compressive displacement of midline structures within the confines of a small posterior fossa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altman DG (1995) Practical statistics for medical research. Chapman & Hall, London

    Google Scholar 

  2. Aylward EH, Reiss A (1991) Area and volume measurement of posterior fossa structures in MRI. J Psychiatr Res 25:159–168

    Article  PubMed  Google Scholar 

  3. Barkovich AJ (2000) Congenital malformations of the brain and skull/congenital anomalies of the spine. In: Barkovich AJ (ed) Pediatric neuroimaging. Lippincott Williams & Wilkins, Philadelphia, PA, pp 330–337

    Google Scholar 

  4. Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain SL, Rapoport JL, Castellanos FX (1998) Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology 50:1087–1093

    PubMed  Google Scholar 

  5. Boltshauser E, Schneider J, Kollias S, Waibel P, Weissert M (2002) Vanishing cerebellum in myelomeningocoele. Eur J Paediatr Neurol 6:109–113

    PubMed  Google Scholar 

  6. Brocklehurst G (1969) A quantitative study of a spina bifida foetus. J Pathol 99:205–211

    Article  PubMed  Google Scholar 

  7. Chiari H (1891) Ueber Veraenderungen des Kleinhirns infolge von Hydrocephalie des Grosshirns. Dtsch Med Wochenschr 17:1172–1175

    Google Scholar 

  8. Christophe C, Dan B (1999) Magnetic resonance imaging cranial and cerebral dimensions: is there a relationship with Chiari I malformation? A preliminary report in children. Eur J Paediatr Neurol 3:15–23

    Article  PubMed  Google Scholar 

  9. Courchesne E, Saitoh O, Yeung-Courchesne R, Press GA, Lincoln AJ, Haas RH, Schreibman L (1994) Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic subgroups with MR imaging. Am J Roentgenol 162:123–130

    Google Scholar 

  10. Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA, Courchesne RY (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57:245–254

    PubMed  Google Scholar 

  11. Dennis M, Edelstein K, Hetherington R, Copeland K, Frederick J, Blaser SE, Kramer LA, Drake JM, Brandt M, Fletcher JM (2004) Neurobiology of perceptual and motor timing in children with spina bifida in relation to cerebellar volume. Brain 127:1–10

    Article  Google Scholar 

  12. Emery JL, Gadsdon DR (1975) A quantitative study of the cell population of the cerebellum in children with myelomeningocele. Dev Med Child Neurol 15(Suppl 29):20–25

    Google Scholar 

  13. Fletcher JM, Copeland K, Frederick JA, Blaser SE, Kramer LA, Northrup H, Hannay HJ, Brandt ME, Francis DJ, Villarreal G, Drake JM, Laurent JP, Townsend I, Inwood S, Boudousquie A, Dennis M (2005) Spinal lesion level in spina bifida: a source of neural and cognitive heterogeneity. J Neurosurg 102:268–279

    PubMed  Google Scholar 

  14. Hardan AY, Minshew NJ, Harenski K, Keshavan MS (2001) Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psych 40:666–672

    Article  Google Scholar 

  15. Harding BN, Copp AJ (2002) Malformations. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology. Edward Arnold, London, pp 376–386

    Google Scholar 

  16. Hori A (2002) Chiari anomaly type II without cerebellar herniation. Acta Neuropathol 105:193–194

    PubMed  Google Scholar 

  17. Jacobsen LK, Giedd JN, Berquin PC, Krain AL, Hamburger SD, Kumra S, Rapoport JL (1997) Quantitative morphology of the cerebellum and fourth ventricle in childhood-onset schizophrenia. Am J Psychiatry 154:1663–1669

    PubMed  Google Scholar 

  18. Jernigan TL, Tallal P (1990) Late childhood changes in brain morphology observable with MRI. Dev Med Child Neurol 32:379–385

    PubMed  Google Scholar 

  19. Just M, Schwarz M, Ludwig B, Ermert J, Thelen M (1990) Cerebral and spinal MR—findings in patients with postrepair myelomeningocele. Pediatr Radiol 20:262–266

    Article  PubMed  Google Scholar 

  20. Lesnik PG, Ciesielski KT, Hart BL, Benzel EC, Sanders JA (1998) Evidence for cerebellar-frontal subsystem changes in children treated with intrathecal chemotherapy for leukemia: enhanced data analysis using an effect size model. Arch Neurol 55:1561–1568

    Article  PubMed  Google Scholar 

  21. Levitt JG, Blanton R, Capetillo-Cunliffe L, Guthrie D, Toga A, McCracken JT (1999) Cerebellar vermis lobules VIII–X in autism. Prog Neuropsychopharmacol Biol Psychiatry 23:625–633

    Article  PubMed  Google Scholar 

  22. McLone DG, Knepper PA (1989) The cause of Chiari II malformation: a unified theory. Pediatr Neurosci 15:1–12

    PubMed  Google Scholar 

  23. Miller RG (1981) Simultaneous statistical inference. Springer, Berlin Heidelberg New York, pp 6–8

    Google Scholar 

  24. Mostofsky SH, Mazzocco MM, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL (1998) Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology 50:121–130

    PubMed  Google Scholar 

  25. Mostofsky SH, Reiss AL, Lockhart P, Denckla MB (1998) Evaluation of cerebellar size in attention-deficit hyperactivity disorder. J Child Neurol 13:434–439

    PubMed  Google Scholar 

  26. Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR (1989) Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol 46:689–694

    PubMed  Google Scholar 

  27. Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC (1999) An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept. Biol Psychiatry 46:703–711

    Article  PubMed  Google Scholar 

  28. Pilu G, Romero R, Reece EA, Goldstein I, Hobbins JC, Bovicelli L (1988) Subnormal cerebellum in fetuses with spina bifida. Am J Obstet Gynecol 158:1052–1056

    PubMed  Google Scholar 

  29. Piven J, Saliba K, Bailey J, Arndt S (1997) An MRI study of autism: the cerebellum revisited. Neurology 49:546–551

    PubMed  Google Scholar 

  30. Raz N, Torres IJ, Spencer WD, White K, Acker JD (1992) Age-related regional differences in cerebellar vermis observed in vivo. Arch Neurol 49:412–416

    PubMed  Google Scholar 

  31. Raz N, Dupuis JH, Briggs SD, McGavran C, Acker JD (1998) Differential effects of age and sex on the cerebellar hemispheres and the vermis: a prospective MR study. Am J Neuroradiol 19:65–71

    PubMed  Google Scholar 

  32. Roche AF, Mukherjee D, Guo SM, Moore WM (1987) Head circumference reference data: birth to 18 years. Pediatrics 79:706–712

    PubMed  Google Scholar 

  33. Saitoh O, Courchesne E, Egaas B, Lincoln AJ, Schreibman L (1995) Cross-sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology 45:317–324

    PubMed  Google Scholar 

  34. Schmahmann JD (2000) MRI atlas of the human cerebellum. Academic, San Diego, CA

    Google Scholar 

  35. Schmitt JE, Eliez S, Warsofsky IS, Bellugi U, Reiss AL (2001) Enlarged cerebellar vermis in Williams syndrome. J Psychiatr Res 35:225–229

    Article  PubMed  Google Scholar 

  36. Sener RN (1995) Cerebellar agenesis versus vanishing cerebellum in Chiari II malformation. Comput Med Imaging Graph 19:491–494

    Article  PubMed  Google Scholar 

  37. Shah SA, Doraiswamy PM, Husain MM, Figiel GS, Boyko OB, McDonald WM, Ellinwood EH, Krishnan KRR (1991) Assessment of posterior fossa structures with midsagittal MRI: the effects of age. Neurobiol Aging 12:371–374

    Article  PubMed  Google Scholar 

  38. SPSS (2001) Statistical package for the social sciences for windows. SPSS, Chicago, IL

  39. Tsai T, Bookstein FL, Levey E, Kinsman SL (2002) Chiari-II malformation: a biometric analysis. Eur J Pediatr Surg 12(Suppl 1):S12–S18

    Article  PubMed  Google Scholar 

  40. Van Allen MI, Kalousek DK, Chernoff GF, Juriloff D, Harris M, McGillivray BC, Yong S, Langlois S, MacLeod PM, Chitayat D, Friedman JM, Wilson RD, McFadden D, Pantzar J, Ritchie S, Hall JG (1993) Evidence for multi-site closure of the neural tube in humans. Am J Med Genet 47:723–743

    Article  PubMed  Google Scholar 

  41. Variend S, Emery JL (1973) The weight of the cerebellum in children with myelomeningocele. Dev Med Child Neurol 15(Suppl 29):77–83

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Daune L. MacGregor, Teresa To, and Pheroze Bharucha, Miss Dawn Greer, and Mrs. Irit Dror for their help and support. Financial support: (1) Research training competition award, The HSC; (2) KidsAction; (3) Spina Bifida and Hydrocephalus Association of Canada; (4) Clinician Scientist training program awards, HSC, and Vision Science Research Program at Toronto Western Hospital; (5) Bloorview MacMillan Hospital foundation grants (MS Salman); (6) National Institutes of Health grant (J Fletcher, M Dennis) “Spina bifida: Cognitive and neurobiological variability”; and (7) Canadian Institute of Health Research of Canada grants MT5404 and ME 5909 (JA Sharpe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Salman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salman, M.S., Blaser, S.E., Sharpe, J.A. et al. Cerebellar vermis morphology in children with spina bifida and Chiari type II malformation. Childs Nerv Syst 22, 385–393 (2006). https://doi.org/10.1007/s00381-005-1180-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-005-1180-y

Keywords

Navigation