Skip to main content
Log in

Impact of moderate to vigorous intensity physical activity on change in renal function in patients after acute myocardial infarction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Acute myocardial infarction (AMI) is associated with a decline in renal function. This study aimed to investigate the impact of engaging in moderate to vigorous intensity physical activity (MVPA) for more than 30 min per day on changes in renal function during the first 3 months after AMI onset. A prospective, observational study was conducted, enrolling 87 patients (75 men; average age, 65.2 ± 12.5 years) who had experienced AMI. The cystatin C-based estimated glomerular filtration rate (eGFRcys) was collected at and 3 months after discharge. Daily MVPA was measured using triaxial accelerometers at a threshold of 3.0 Metabolic equivalent of the task for 3 months. Generalized estimating equations (GEE) were applied to evaluate the longitudinal association between the number of days per week of MVPA for 30 min or more and within-patient changes in eGFRcys. The patients were categorized into three groups based on their MVPA engagement days: 0 days (n = 20), 1–2 days (n = 14), and 3–7 days (n = 53) groups. After adjusting for potential confounding variables, GEE analysis revealed that the eGFRcys slope over 3 months was significantly higher in the 3–7 days group than in 0 days group (B = 2.9, (95% confidence interval: 1.5–4.2), p < 0.001). Similar results were obtained when MVPA time thresholds were set to 40 and 60 min. These findings suggest a significant positive effect of engaging in MVPA for 30 min or more for 3–7 days per week in the improvement of renal function after AMI onset.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AMI:

acute myocardial infarction

AT:

aerobic threshold

BNP:

B-type natriuretic peptide

CKD:

chronic kidney disease

eGFR:

estimated glomerular filtration rate

eGFRcreat:

creatinine-based estimated glomerular filtration rate

eGFRcys:

cystatin C-based estimated glomerular filtration rate

GEE:

generalized estimating equation

LVEF:

left ventricular ejection fraction

MVPA:

moderate to vigorous intensity physical activity

PCI:

percutaneous coronary intervention

References

  1. Eijkelkamp WB, de Graeff PA, van Veldhuisen DJ, van Dokkum RP, Gansevoort RT, de Jong PE, de Zeeuw D, Hillege HL (2007) Effect of first myocardial ischemic event on renal function. Am J Cardiol 100:7–12

    Article  PubMed  Google Scholar 

  2. Hillege HL, van Gilst WH, van Veldhuisen DJ, Navis G, Grobbee DE, de Graeff PA, de Zeeuw D (2003) Accelerated decline and prognostic impact of renal function after myocardial infarction and the benefits of ACE inhibition: the CATS randomized trial. Eur Heart J 24:412–420

    Article  CAS  PubMed  Google Scholar 

  3. Esmeijer K, Geleijnse JM, de Fijter JW, Giltay EJ, Kromhout D, Hoogeveen EK (2018) Cardiovascular risk factors accelerate kidney function decline in post-myocardial infarction patients: the alpha omega cohort study. Kidney Int Rep 3:879–888

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anavekar NS, McMurray JJ, Velazquez EJ, Solomon SD, Kober L, Rouleau JL, White HD, Nordlander R, Maggioni A, Dickstein K, Zelenkofske S, Leimberger JD, Califf RM, Pfeffer MA (2004) Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 351:1285–1295

    Article  CAS  PubMed  Google Scholar 

  5. Okina Y, Miura T, Senda K, Taki M, Kobayashi M, Kanai M, Okuma Y, Yanagisawa T, Hashizume N, Otagiri K, Shoin K, Watanabe N, Ebisawa S, Karube K, Nakajima H, Saigusa T, Miyashita Y, Kashiwagi D, Machida K, Abe N, Tachibana T, Kanzaki Y, Maruyama T, Nomi H, Sakai T, Yui H, Mochidome T, Kobayashi T, Kasai T, Ikeda U, Kuwahara K (2021) Prognostic ability of mid-term worsening renal function after percutaneous coronary intervention: findings from the SHINANO registry. Heart Vessels 36:1496–1505

    Google Scholar 

  6. Takaya Y, Kumasaka R, Arakawa T, Ohara T, Nakanishi M, Noguchi T, Yanase M, Takaki H, Kawano Y, Goto Y (2014) Impact of cardiac rehabilitation on renal function in patients with and without chronic kidney disease after acute myocardial infarction. Circ J 78:377–384

    Article  PubMed  Google Scholar 

  7. Sato T, Kohzuki M, Ono M, Muto M, Osugi T, Kawamura K, Naganuma W, Sato M, Shishito N (2019) Association between physical activity and change in renal function in patients after acute myocardial infarction. PLoS ONE 14:e0212100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sato T, Kohzuki M, Ono M, Muto M, Osugi T, Kawamura K, Naganuma W, Sato M, Tsuchikawa M, Shishito N, Komaki T, Miyazawa K (2021) Association between physical activity and changes in renal function in patients after acute myocardial infarction: a dual-center prospective study. J Cardiol 78:120–128

    Article  PubMed  Google Scholar 

  9. Sato T, Kohzuki M (2021) Author’s reply. J Cardiol 78:598–599

    Article  PubMed  Google Scholar 

  10. Liguori G, Medicine A (2020) CoS. ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins, pp 1–25

  11. Japanese Circulation Society/the Japanese Association of Cardiac Rehabilitation Joint Working Group (2022) JCS/JACR 2021 guideline on rehabilitation in patients with cardiovascular disease. Circ J 87:155–235

    Article  Google Scholar 

  12. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S (2013) GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis 61:197–203

    Article  CAS  PubMed  Google Scholar 

  13. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992

    Article  CAS  PubMed  Google Scholar 

  14. Séronie-Vivien S, Delanaye P, Piéroni L, Mariat C, Froissart M, Cristol JP (2008) Cystatin C: current position and future prospects. Clin Chem Lab Med 46:1664–1686

    Article  PubMed  Google Scholar 

  15. Poortmans JR, Gulbis B, De Bruyn E, Baudry S, Carpentier A (2013) Limitations of serum values to estimate glomerular filtration rate during exercise. Br J Sports Med 47:1166–1170

    Article  PubMed  Google Scholar 

  16. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories (2002) ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 166:111–117

    Article  Google Scholar 

  17. Kamiya K, Masuda T, Matsue Y, Hamazaki N, Matsuzawa R, Tanaka S, Nozaki K, Maekawa E, Noda C, Yamaoka-Tojo M, Matsunaga A, Ako J (2017) Prognostic usefulness of arm and calf circumference in patients ≥ 65 years of age with cardiovascular disease. Am J Cardiol 119:186–191

    Article  PubMed  Google Scholar 

  18. Millor N, Lecumberri P, Gómez M, Martínez-Ramírez A, Izquierdo M (2013) An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit. J Neuroeng Rehabil 10:86

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shou H, Hsu JY, Xie D, Yang W, Roy J, Anderson AH, Landis JR, Feldman HI, Parsa A, Jepson C (2017) Analytic considerations for repeated measures of eGFR in cohort studies of CKD. Clin J Am Soc Nephrol 12:1357–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamagata K, Takahashi H, Suzuki S, Mase K, Hagiwara M, Shimizu Y, Hirayama K, Kobayashi M, Narita M, Koyama A (2004) Age distribution and yearly changes in the incidence of ESRD in Japan. Am J Kidney Dis 43:433–443

    Article  PubMed  Google Scholar 

  21. Imai E, Horio M, Yamagata K, Iseki K, Hara S, Ura N, Kiyohara Y, Makino H, Hishida A, Matsuo S (2008) Slower decline of glomerular filtration rate in the Japanese general population: a longitudinal 10-year follow-up study. Hypertens Res 31:433–441

    Article  PubMed  Google Scholar 

  22. Melsom T, Norvik JV, Enoksen IT, Stefansson V, Mathisen UD, Fuskevåg OM, Jenssen TG, Solbu MD, Eriksen BO (2022) Sex differences in Age-related loss of kidney function. J Am Soc Nephrol 33:1891–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iseki K, Oshiro S, Tozawa M, Ikemiya Y, Fukiyama K, Takishita S (2002) Prevalence and correlates of diabetes mellitus in a screened cohort in Okinawa, Japan. Hypertens Res 25:185–190

    Article  PubMed  Google Scholar 

  24. Ruggenenti P, Schieppati A, Remuzzi G (2001) Progression, remission, regression of chronic renal diseases. Lancet 357:1601–1608

    Article  CAS  PubMed  Google Scholar 

  25. Muntner P, Coresh J, Smith JC, Eckfeldt J, Klag MJ (2000) Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int 58:293–301

    Article  CAS  PubMed  Google Scholar 

  26. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539

    Article  PubMed  Google Scholar 

  27. Hara M, Nishida Y, Tanaka K, Shimanoe C, Koga K, Furukawa T, Higaki Y, Shinchi K, Ikezaki H, Murata M, Takeuchi K, Tamura T, Hishida A, Tsukamoto M, Kadomatsu Y, Matsuo K, Oze I, Mikami H, Kusakabe M, Takezaki T, Ibusuki R, Suzuki S, Nakagawa-Senda H, Matsui D, Koyama T, Kuriki K, Takashima N, Nakamura Y, Arisawa K, Katsuura-Kamano S, Wakai K (2023) Moderate-to-vigorous physical activity and sedentary behavior are independently associated with renal function: a cross-sectional study. J Epidemiol 33:285–293

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shlipak MG, Sheshadri A, Hsu FC, Chen SH, Jotwani V, Tranah G, Fielding RA, Liu CK, Ix J, Coca SG (2022) Effect of structured, moderate exercise on kidney function decline in sedentary older adults: an ancillary analysis of the LIFE study randomized clinical trial. JAMA Intern Med 182:650–659

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bruinius JW, Hannan M, Chen J, Brown J, Kansal M, Meza N, Saunders MR, He J, Ricardo AC, Lash JP (2022) Self-reported physical activity and cardiovascular events in adults with CKD: findings from the CRIC (chronic renal insufficiency cohort) study. Am J Kidney Dis 80:751–761

    Article  PubMed  PubMed Central  Google Scholar 

  30. Toyama K, Sugiyama S, Oka H, Sumida H, Ogawa H (2010) Exercise therapy correlates with improving renal function through modifying lipid metabolism in patients with cardiovascular disease and chronic kidney disease. J Cardiol 56:142–146

    Article  PubMed  Google Scholar 

  31. Kimura S, Ueda Y, Ise T, Yagi S, Iwase T, Nishikawa K, Yamaguchi K, Yamada H, Soeki T, Wakatsuki T, Katoh S, Akaike M, Yasui N, Sata M (2015) Impact of supervised cardiac rehabilitation on urinary albumin excretion in patients with cardiovascular disease. Int Heart J 56:105–109

    Article  PubMed  Google Scholar 

  32. Iso Y, Kitai H, Kowaita H, Kyuno E, Maezawa H, Hashimoto T, Takahashi T, Sanbe T, Suzuki H (2015) Association of aging with glomerular filtration changes in cardiac rehabilitation participants with chronic kidney disease. Int J Cardiol 187:283–285

    Article  PubMed  Google Scholar 

  33. Fujimi K, Miura SI, Matsuda T, Fujita M, Ura Y, Kaino K, Sakamoto M, Horita T, Arimura T, Shiga Y, Saku K (2015) Influence of a cardiac rehabilitation program on renal function in patients with cardiovascular disease in a one-year follow-up. Cardiol Res 6:311–315

    Article  PubMed  Google Scholar 

  34. Hama T, Oikawa K, Ushijima A, Morita N, Matsukage T, Ikari YJ, Kobayashi Y (2018) Effect of cardiac rehabilitation on the renal function in chronic kidney disease - analysis using serum cystatin-C based glomerular filtration rate. Int J Cardiol Heart Vasc 19:27–33

    PubMed  Google Scholar 

  35. Sasamoto Y, Endo N, Kanazawa K, Utsumi T, Takahashi T, Endo Y, Nanba M, Takeda H, Takano T, Takahashi K, Tanji M, Kohzuki M (2021) Outpatient cardiac rehabilitation suppresses deterioration of renal function in patients ≥ 75 years of age with heart disease. Circ J 85:612–622

    Article  CAS  PubMed  Google Scholar 

  36. Hama T, Ushijima A, Goto T, Nagamatsu H, Morita N, Yoshimachi F, Ikari Y, Kobayashi Y (2022) Effect of cardiac rehabilitation on glomerular filtration rate using serum cystatin C concentration in patients with cardiovascular disease and renal dysfunction. J Cardiopulm Rehabil Prev 42:E15–E22

    Article  PubMed  Google Scholar 

  37. Ainsworth B, Cahalin L, Buman M, Ross R (2015) The current state of physical activity assessment tools. Prog Cardiovasc Dis 57:387–395

    Article  PubMed  Google Scholar 

  38. Nagayoshi S, Oshima Y, Ando T, Aoyama T, Nakae S, Usui C, Kumagai S, Tanaka S (2019) Validity of estimating physical activity intensity using a triaxial accelerometer in healthy adults and older adults. BMJ Open Sport Exerc Med 5:e000592

    Article  PubMed  Google Scholar 

  39. Hammond-Haley M, Allen C, Han J, Patterson T, Marber M, Redwood S (2021) Utility of wearable physical activity monitors in cardiovascular disease: a systematic review of 11 464 patients and recommendations for optimal use. Eur Heart J Digit Health 2:231–243

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to all the patients whose participation made this investigation possible, as well as to all colleagues at Southern Tohoku General Hospital for their valuable contributions to the medical care of the patients.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Toshimi Sato and Masahiro Kohzuki contributed to the conception or design of the work. All authors contributed to the acquisition, analysis, or interpretation of data for the work. Toshimi Sato drafted the manuscript. Masahiro Ono, Keiichi Kawamura, Wakako Naganuma, Namiko Shishito, Shinichiro Morishita, Yuichiro Sasamotoa and Masahiro Kohzuki critically revised the manuscript. All gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.

Corresponding author

Correspondence to Toshimi Sato.

Ethics declarations

Ethics approval and consent to participate

The study was conducted in accordance with the principles of the Declaration of Helsinki. It received approval from the Ethics Committee of Tohoku University Graduate School of Medicine (Approval No. 2016-1‐683) and the Ethics Committee of Southern Tohoku General Hospital (Approval No. D16‐14).

Consent for publication

All participants provided written informed consent after receiving an explanation of the study’s purpose and protocol.

Competing interests

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Ono, M., Kawamura, K. et al. Impact of moderate to vigorous intensity physical activity on change in renal function in patients after acute myocardial infarction. Heart Vessels 39, 393–403 (2024). https://doi.org/10.1007/s00380-023-02354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-023-02354-6

Keywords

Navigation