Skip to main content
Log in

Plasma catestatin levels are related to metabolic parameters in patients with essential hypertension and type 2 diabetes mellitus

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Catestatin (CST) is a pleiotropic peptide with cardioprotective and metabolic effects. CST is involved in the pathogenesis of both arterial hypertension (AH) and type 2 diabetes mellitus (T2DM), which are the risk factors of cardiovascular diseases. In this study, we aimed to investigate the plasma CST levels in hypertensive patients, especially with T2DM, as well as compare those with healthy volunteers, and explore the relationship between CST levels and clinical, anthropometric and laboratory parameters. 106 Hypertensive patients, 55 of which had comorbidity T2DM, and 30 healthy volunteers were enrolled in the study. All subjects underwent clinical examination, including vital signs and anthropometric data assessment, medical history interview, and blood sample collection. Plasma CST levels were measured by an enzyme-linked immunosorbent assay (ELISA), using a commercial diagnostic kit. The plasma CST levels were significantly lower in hypertensive patients (N = 106) compared with healthy subjects (N = 30) (5.02 ± 1.09 vs. 6.64 ± 0.72; p < 0.001). Furthermore, hypertensive patients with T2DM (N = 55) have significantly reduced CST levels in comparison with those without T2DM (N = 51) (4.47 ± 1.16 vs. 5.61 ± 0.61; p < 0.001). CST significantly correlated with anthropometric characteristics, in particular, weight (r =  − 0.344; p < 0.001), BMI (r =  − 0.42; p < 0.001), neck (r =  − 0.358; p < 0.001), waist (r =  − 0.487; p < 0.001), hip (r =  − 0.312; p < 0.001), wrist circumferences (r =  − 0.264; p = 0.002), and waist-to-hip ratio (r =  − 0.395; p < 0.001). Due to its antihypertensive effect, CST has significant associations with systolic BP (r =  − 0.475; p < 0.001) and duration of AH (r =  − 0.26; p = 0.007). CST also has an inverse relationship with insulin (r =  − 0.382; p < 0.001), glucose (r =  − 0.45; p < 0.001), index HOMA-IR (r =  − 0.481; p < 0.001) and HbA1c (r =  − 0.525; p < 0.001), that indicate its involvement in T2DM development. Besides, CST has significant correlations with uric acid levels (r =  − 0.412; p < 0.001) as well as lipid parameters, especially HDL-C (r = 0.480; p < 0.001), VLDL-C (r =  − 0.238; p = 0.005), TG (r =  − 0.4; p < 0.001), non-HDL-C/HDL-C (r =  − 0.499; p < 0.001). Multiple linear regression analysis indicated BMI (β =  − 0.22; p = 0.007), AH duration (β =  − 0.25; p = 0.008), HbA1c (β =  − 0.43; p = 0.019) and HDL-C levels (β = 0.27; p = 0.001) as independent predictors of CST levels. The hypertensive patients have significantly decreased CST levels that are even more reduced in the presence of comorbid T2DM. The established correlations with anthropometric and laboratory parameters indicate not only antihypertensive but also metabolic effects of CST. Our results suggest the probable role of CST in the pathophysiology of cardiometabolic diseases and the development of cardiovascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. World Health Organization (2020) Global health estimates 2019 Summary tables: deaths by cause, age and sex, by world bank income group, 2000–2019. https://www.who.int/docs/default-source/gho-documents/global-health-estimates/ghe2019_cod_wbincome_2000_201933383745-a750-4d94-8491-fb209dcece6f.xlsx?sfvrsn=e7bafa8_5). Accessed 10 May 2023.

  2. GBD 2017 Risk Factor Collaborators (2018) Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392(10159):1923–1994

    Article  Google Scholar 

  3. Al Ghorani H, Götzinger F, Böhm M, Mahfoud F (2022) Arterial hypertension—clinical trials update 2021. Nutr Metab Cardiovasc Dis 32(1):21–31

    Article  PubMed  Google Scholar 

  4. Sabuncu T, Sonmez A, Eren MA, Sahin I, Çorapçioğlu D, Üçler R, Akin Ş, Haymana C, Demirci İ, Atmaca A, Ersöz HÖ, Satman I, Bayram F, TEMD Study Group (2021) Characteristics of patients with hypertension in a population with type 2 diabetes mellitus. results from the Turkish nationwide SurvEy of glycemic and other metabolic parameters of patients with diabetes mellitus (TEMD hypertension study). Prim Care Diabetes 15(2):332–339

    Article  PubMed  Google Scholar 

  5. Petrie JR, Guzik TJ, Touyz RM (2018) Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol 34(5):575–584

    Article  PubMed  Google Scholar 

  6. Pavlou DI, Paschou SA, Anagnostis P, Spartalis M, Spartalis E, Vryonidou A, Tentolouris N, Siasos G (2018) Hypertension in patients with type 2 diabetes mellitus: targets and management. Maturitas 112:71–77

    Article  PubMed  Google Scholar 

  7. Saxena T, Ali AO, Saxena M (2018) Pathophysiology of essential hypertension: an update. Expert Rev Cardiovasc Ther 16(12):879–887

    Article  CAS  PubMed  Google Scholar 

  8. Cheung BM, Li C (2012) Diabetes and hypertension: is there a common metabolic pathway? Curr Atheroscler Rep 14(2):160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Valensi P (2021) Autonomic nervous system activity changes in patients with hypertension and overweight: role and therapeutic implications. Cardiovasc Diabetol 20(1):170

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rui L (2014) Energy metabolism in the liver. Compr Physiol 4(1):177–197

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mahata SK, Mahata M, Fung MM, O’Connor DT (2010) Reprint of: Catestatin: a multifunctional peptide from chromogranin A. Regul Pept 165(1):52–62

    Article  CAS  PubMed  Google Scholar 

  12. Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ (1997) Novel autocrine feedback control of catecholamine release a discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest 100(6):1623–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Connor DT, Kailasam MT, Kennedy BP, Ziegler MG, Yanaihara N, Parmer RJ (2002) Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens 20(7):1335–1345

    Article  PubMed  Google Scholar 

  14. Gayen JR, Gu Y, O’Connor DT, Mahata SK (2009) Global disturbances in autonomic function yield cardiovascular instability and hypertension in the chromogranin A null mouse. Endocrinology 150(11):5027–5035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahapatra NR, O’Connor DT, Vaingankar SM, Hikim AP, Mahata M, Ray S, Staite E, Wu H, Gu Y, Dalton N, Kennedy BP, Ziegler MG, Ross J, Mahata SK (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115(7):1942–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ying W, Tang K, Avolio E, Schilling JM, Pasqua T, Liu MA, Cheng H, Gao H, Zhang J, Mahata S, Ko MS, Bandyopadhyay G, Das S, Roth DM, Sahoo D, Webster NJG, Sheikh F, Ghosh G, Patel HH, Ghosh P, van den Bogaart G, Mahata SK (2021) Immunosuppression of macrophages underlies the cardioprotective effects of CST (catestatin). Hypertension 77(5):1670–1682

    Article  CAS  PubMed  Google Scholar 

  17. Avolio E, Mahata SK, Mantuano E, Mele M, Alò R, Facciolo RM, Talani G, Canonaco M (2014) Antihypertensive and neuroprotective effects of catestatin in spontaneously hypertensive rats: interaction with GABAergic transmission in amygdala and brainstem. Neuroscience 270:48–57

    Article  CAS  PubMed  Google Scholar 

  18. Gaede AH, Pilowsky PM (2012) Catestatin, a chromogranin A-derived peptide, is sympathoinhibitory and attenuates sympathetic barosensitivity and the chemoreflex in rat CVLM. Am J Physiol Regul Integr Comp Physiol 302(3):R365–R372

    Article  CAS  PubMed  Google Scholar 

  19. Gaede AH, Pilowsky PM (2010) Catestatin in rat RVLM is sympathoexcitatory, increases barosensitivity, and attenuates chemosensitivity and the somatosympathetic reflex. Am J Physiol Regul Integr Comp Physiol 299(6):R1538–R1545

    Article  CAS  PubMed  Google Scholar 

  20. Angelone T, Quintieri AM, Pasqua T, Filice E, Cantafio P, Scavello F, Rocca C, Mahata SK, Gattuso A, Cerra MC (2015) The NO stimulator, catestatin, improves the Frank-Starling response in normotensive and hypertensive rat hearts. Nitric Oxide 50:10–19

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy BP, Mahata SK, O’Connor DT, Ziegler MG (1998) Mechanism of cardiovascular actions of the chromogranin A fragment catestatin in vivo. Peptides 19(7):1241–1248

    Article  CAS  PubMed  Google Scholar 

  22. Krüger PG, Mahata SK, Helle KB (2002) Catestatin (chromograninA344-358) stimulates release of histamine from rat pleural and peritoneal mast cells. Ann N Y Acad Sci 971:349–351

    Article  Google Scholar 

  23. Kumric M, Vrdoljak J, Dujic G, Supe-Domic D, Ticinovic Kurir T, Dujic Z, Bozic J (2022) Serum catestatin levels correlate with ambulatory blood pressure and indices of arterial stiffness in patients with primary hypertension. Biomolecules 12(9):1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meng L, Ye XJ, Ding WH, Yang Y, Di BB, Liu L, Huo Y (2011) Plasma catecholamine release-inhibitory peptide catestatin in patients with essential hypertension. J Cardiovasc Med 12(9):643–647

    Article  Google Scholar 

  25. Durakoğlugil ME, Ayaz T, Kocaman SA, Kırbaş A, Durakoğlugil T, Erdoğan T, Çetin M, Şahin OZ, Çiçek Y (2015) The relationship of plasma catestatin concentrations with metabolic and vascular parameters in untreated hypertensive patients: influence on high-density lipoprotein cholesterol. Anatol J Cardiol 15:577–585

    Article  PubMed  Google Scholar 

  26. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I, ESC Scientific Document Group (2018) 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European society of cardiology (ESC) and the European society of hypertension (ESH). Eur Heart J 39(33):3021–3104

    Article  PubMed  Google Scholar 

  27. World Health Organization (1995) Physical status: the use and interpretation of anthropometry. report of a WHO expert committee. World Health Organ Tech Rep Ser 854:1–452

    Google Scholar 

  28. World Health Organization. Noncommunicable Diseases and Mental Health Cluster (2020) WHO STEPS Surveillance manual: the WHO STEPwise approach to noncommunicable disease risk factor surveillance. https://www.who.int/docs/default-source/ncds/ncd-surveillance/steps/steps-manual.pdf?sfvrsn=c281673d_5. Accessed 02 May 2023.

  29. American Diabetes Association (2022) Standards of medical care in diabetes-2022 abridged for primary care providers. Clin Diabetes 40(1):10–38

    Article  PubMed Central  Google Scholar 

  30. World Health Organization (2000) Obesity: preventing and managing the global epidemic report of a WHO consultation. World Health Organ Tech Rep Ser 894(i–xii):1–253

    Google Scholar 

  31. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Inter 3(1):1–150

    Google Scholar 

  32. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, De Backer GG, Delgado V, Ference BA, Graham IM, Halliday A, Landmesser U, Mihaylova B, Pedersen TR, Riccardi G, Richter DJ, Sabatine MS, Taskinen MR, Tokgozoglu L, Wiklund O, ESC Scientific Document Group (2020) 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the task force for the management of dyslipidaemias of the European society of cardiology (ESC) and European atherosclerosis society (EAS). Eur Heart J 41(1):111–188

    Article  PubMed  Google Scholar 

  33. Gubareva EY, Kryukov NN, Gubareva IV, Zheltyakova OV, Martynenko ID (2018) The catestatin role in the formation of arterial pressure circadian profile in patients with essential hypertension. Cardiol News Opin Train 6(3):41–50 (in Russian)

    Google Scholar 

  34. Schillaci G, De Vuono S, Pucci G (2011) An endogenous brake on the sympathetic nervous system: the emerging role of catestatin in hypertension. J Cardiovasc Med 12:609–612

    Article  Google Scholar 

  35. Ding L, Zheng QQ, Li Y, Chen XY, Chen R, Wang XR, Gong YS, Fan XF (2016) Role of catestatin in 2K1C-induced renal hypertension in rats and the underlying mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi 32(3):214–218 (in Chinese)

    PubMed  Google Scholar 

  36. Salem RM, Cadman PE, Chen Y, Rao F, Wen G, Hamilton BA, Rana BK, Smith DW, Stridsberg M, Ward HJ, Mahata M, Mahata SK, Bowden DW, Hicks PJ, Freedman BI, Schork NJ, O’Connor DT (2008) Chromogranin a polymorphisms are associated with hypertensive renal disease. J Am Soc Nephrol 19(3):600–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kojima M, Ozawa N, Mori Y, Takahashi Y, Watanabe-Kominato K, Shirai R, Watanabe R, Sato K, Matsuyama TA, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T (2018) Catestatin prevents macrophage-driven atherosclerosis but not arterial injury–induced neointimal hyperplasia. Thromb Haemost 118(1):182–194

    Article  PubMed  Google Scholar 

  38. Chen Y, Wang X, Yang C, Su X, Yang W, Dai Y, Han H, Jiang J, Lu L, Wang H, Chen Q, Jin W (2019) Decreased circulating catestatin levels are associated with coronary artery disease: the emerging anti-inflammatory role. Atherosclerosis 281:78–88

    Article  CAS  PubMed  Google Scholar 

  39. Xu W, Yu H, Wu H, Li S, Chen B, Gao W (2017) Plasma catestatin in patients with acute coronary syndrome. Cardiology 136(3):164–169

    Article  CAS  PubMed  Google Scholar 

  40. Zhu D, Xie H, Wang X, Liang Y, Yu H, Gao W (2017) Catestatin-a novel predictor of left ventricular remodeling after acute myocardial infarction. Sci Rep 7:44168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu D, Xie H, Wang X, Liang Y, Yu H, Gao W (2015) Correlation of plasma catestatin level and the prognosis of patients with acute myocardial infarction. PLoS ONE 10(4):e0122993

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang X, Xu S, Liang Y, Zhu D, Mi L, Wang G, Gao W (2011) Dramatic changes in catestatin are associated with hemodynamics in acute myocardial infarction. Biomarkers 16(4):372–377

    Article  CAS  PubMed  Google Scholar 

  43. Meng L, Wang J, Ding WH, Han P, Yang Y, Qi LT, Zhang BW (2013) Plasma catestatin level in patients with acute myocardial infarction and its correlation with ventricular remodelling. Postgrad Med J 89(1050):193–196

    Article  PubMed  Google Scholar 

  44. Liu L, Ding W, Zhao F, Shi L, Pang Y, Tang C (2013) Plasma levels and potential roles of catestatin in patients with coronary heart disease. Scand Cardiovasc J 47(4):217–224

    Article  CAS  PubMed  Google Scholar 

  45. Gubareva E, Gubareva I (2021) Catestatin in patients with essential hypertension of different cardiovascular risk. Eur Heart J 42(ehab724):2280

    Google Scholar 

  46. Korzh O, Krasnokutskiy S, Pankova O (2019) Improving the drug compliance of hypertensive patients in primary care: importance of health education and self-management. Arch Balk Med Union 54(3):497–502

    Article  Google Scholar 

  47. Liu L, Ding W, Li R, Ye X, Zhao J, Jiang J, Meng L, Wang J, Chu S, Han X, Peng F (2013) Plasma levels and diagnostic value of catestatin in patients with heart failure. Peptides 46:20–25

    Article  CAS  PubMed  Google Scholar 

  48. Simac P, Perkovic D, Bozic I, Matijas M, Gugo K, Martinovic D, Bozic J (2022) Serum catestatin levels in patients with rheumatoid arthritis. Sci Rep 12(1):3812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim J, Lee S, Bhattacharjee R, Khalyfa A, Kheirandish-Gozal L, Gozal D (2010) Leukocyte telomere length and plasma catestatin and myeloid-related protein 8/14 concentrations in children with obstructive sleep apnea. Chest 138(1):91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bralewska M, Biesiada L, Grzesiak M, Rybak-Krzyszkowska M, Huras H, Gach A, Pietrucha T, Sakowicz A (2021) Chromogranin A demonstrates higher expression in preeclamptic placentas than in normal pregnancy. BMC Pregnancy Childbirth 21(1):680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tüten N, Güralp O, Gök K, Hamzaoglu K, Oner YO, Makul M, Bulut H, Irmak K, Tüten A, Malik E (2022) Serum catestatin level is increased in women with preeclampsia. J Obstet Gynaecol 42(1):55–60

    Article  PubMed  Google Scholar 

  52. Özalp M, Yaman H, Demir Ö, Aytekin Garip S, Aran T, Osmanağaoğlu MA (2021) The role of maternal serum catestatin in the evaluation of preeclampsia and fetal cardiac functions. Turk J Obstet Gynecol 18(4):272–278

    Article  PubMed  PubMed Central  Google Scholar 

  53. Borovac JA, Dogas Z, Supe-Domic D, Galic T, Bozic J (2019) Catestatin serum levels are increased in male patients with obstructive sleep apnea. Sleep Breath 23(2):473–481

    Article  PubMed  Google Scholar 

  54. Simunovic M, Supe-Domic D, Karin Z, Degoricija M, Paradzik M, Bozic J, Unic I, Skrabic V (2019) Serum catestatin concentrations are decreased in obese children and adolescents. Pediatr Diabetes 20(5):549–555

    CAS  PubMed  Google Scholar 

  55. Zivkovic PM, Matetic A, Tadin Hadjina I, Rusic D, Vilovic M, Supe-Domic D, Borovac JA, Mudnic I, Tonkic A, Bozic J (2020) Serum catestatin levels and arterial stiffness parameters are increased in patients with inflammatory bowel disease. J Clin Med 9:628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Muntjewerff EM, Tang K, Lutter L, Christoffersson G, Nicolasen MJT, Gao H, Katkar GD, Das S, Ter Beest M, Ying W, Ghosh P, El Aidy S, Oldenburg B, van den Bogaart G, Mahata SK (2021) Chromogranin A regulates gut permeability via the antagonistic actions of its proteolytic peptides. Acta Physiol 232(2):e13655

    Article  CAS  Google Scholar 

  57. Borovac JA, Glavas D, Susilovic Grabovac Z, Supe-Domic D, D’Amario D, Bozic J (2019) Catestatin in acutely decompensated heart failure patients: insights from the CATSTAT-HF study. J Clin Med 8(8):1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ying W, Mahata S, Bandyopadhyay GK, Zhou Z, Wollam J, Vu J, Mayoral R, Chi NW, Webster NJG, Corti A, Mahata SK (2018) Catestatin inhibits obesity-induced macrophage infiltration and inflammation in the liver and suppresses hepatic glucose production leading to improved insulin sensitivity. Diabetes 67(5):841–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bandyopadhyay G, Tang K, Webster NJG, van den Bogaart G, Mahata SK (2022) Catestatin induces glycogenesis by stimulating the phosphoinositide 3-kinase-AKT pathway. Acta Physiol 235(1):e13775

    Article  CAS  Google Scholar 

  60. Dasgupta A, Bandyopadhyay GK, Ray I, Bandyopadhyay K, Chowdhury N, De RK, Mahata SK (2020) Catestatin improves insulin sensitivity by attenuating endoplasmic reticulum stress: in vivo and in silico validation. Comput Struct Biotechnol J 18:464–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gallo MP, Femminò S, Antoniotti S, Querio G, Alloatti G, Levi R (2018) Catestatin induces glucose uptake and GLUT4 trafficking in adult rat cardiomyocytes. Biomed Res Int 2018:2086109

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li DT, Habtemichael EN, Julca O, Sales CI, Westergaard XO, DeVries SG, Ruiz D, Sayal B, Bogan JS (2019) GLUT4 storage vesicles: specialized organelles for regulated trafficking. Yale J Biol Med 92(3):453–470

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mahata SK, Mahata S, Pasqua T, Avolio E, Tang K, Bandyopadhyay G, Webster NJG (2022) Catestatin regulates core bioenergetic and metabolic functions of the myocardium. FASEB J. https://doi.org/10.1096/fasebj.2022.36.S1.R3297

    Article  Google Scholar 

  64. Bandyopadhyay GK, Vu CU, Gentile S, Lee H, Biswas N, Chi NW, O’Connor DT, Mahata SK (2012) Catestatin (chromogranin A352–372) and novel effects on mobilization of fat from adipose tissue through regulation of adrenergic and leptin signaling. J Biol Chem 287(27):23141–23151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Verghese PB, Arrese EL, Soulages JL (2007) Stimulation of lipolysis enhances the rate of cholesterol efflux to HDL in adipocytes. Mol Cell Biochem 302(1–2):241–248

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Y, McGillicuddy FC, Hinkle CC, O’Neill S, Glick JM, Rothblat GH, Reilly MP (2010) Adipocyte modulation of high-density lipoprotein cholesterol. Circulation 121(11):1347–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fahed G, Aoun L, Bou Zerdan M, Allam S, Bou Zerdan M, Bouferraa Y, Assi HI (2022) metabolic syndrome: updates on pathophysiology and management in 2021. Int J Mol Sci 23(2):786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Johannesen CDL, Langsted A, Mortensen MB, Nordestgaard BG (2020) Association between low density lipoprotein and all cause and cause specific mortality in Denmark: prospective cohort study. BMJ 371:m4266

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hingorjo MR, Qureshi MA, Mehdi A (2012) Neck circumference as a useful marker of obesity: a comparison with body mass index and waist circumference. J Pak Med Assoc 62(1):36–40

    PubMed  Google Scholar 

  70. Kamarli Altun H, Suna G (2022) Is neck circumference related to other anthropometric measurements and biochemical parameters in type 2 diabetes? Cureus 14(10):e30750

    PubMed  PubMed Central  Google Scholar 

  71. Ross R, Neeland IJ, Yamashita S, Shai I, Seidell J, Magni P, Santos RD, Arsenault B, Cuevas A, Hu FB, Griffin BA, Zambon A, Barter P, Fruchart JC, Eckel RH, Matsuzawa Y, Després JP (2020) Waist circumference as a vital sign in clinical practice: a consensus statement from the IAS and ICCR working group on visceral obesity. Nat Rev Endocrinol 16(3):177–189

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mousapour P, Barzin M, Valizadeh M, Mahdavi M, Hadaegh F, Azizi F, Hosseinpanah F (2021) Wrist circumference as a novel predictor of transition from metabolically healthy to unhealthy phenotype in overweight/obese adults: a gender-stratified 15.5-year follow-up. BMC Public Health 21(1):2276

    Article  PubMed  PubMed Central  Google Scholar 

  73. Picó C, Palou M, Pomar CA, Rodríguez AM, Palou A (2022) Leptin as a key regulator of the adipose organ. Rev Endocr Metab Disord 23(1):13–30

    Article  PubMed  Google Scholar 

  74. Luketin M, Mizdrak M, Boric-Skaro D, Martinovic D, Tokic D, Vilovic M, Supe-Domic D, Ticinovic Kurir T, Bozic J (2021) Plasma catestatin levels and advanced glycation end products in patients on hemodialysis. Biomolecules 11(3):456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pei Z, Ma D, Ji L, Zhang J, Su J, Xue W, Chen X, Wang W (2014) Usefulness of catestatin to predict malignant arrhythmia in patients with acute myocardial infarction. Peptides 55:131–135

    Article  CAS  PubMed  Google Scholar 

  76. Kumrić M, Borovac JA, Kurir TT, Božić J (2021) Clinical implications of uric acid in heart failure: a comprehensive review. Life 11(1):53

    Article  PubMed  PubMed Central  Google Scholar 

  77. Borghi C, Cicero AFG (2017) Serum uric acid and cardiometabolic disease: another brick in the wall? Hypertension 69(6):1011–1013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—OP, OK; design—OP, OK; methodology—OP, OK; project administration—OP; resource—OP; data curation—OP; investigation—OP; formal analysis—OP; visualization—OP; validation—OP, OK; supervision—OK; literature search—OP; writing—original draft: OP; writing—review and editing: OK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Olena Pankova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was performed in accordance with all ethical principles of the Seventh Revision of the Helsinki Declaration from 2013. The study protocol was approved by the Ethics Committee of the Medical-Sanitary Base of JSC “Kharkiv Tractor Plant” (date of approval: 21 September 2021).

Consent to participate

Each patient was informed about the objectives, course, approximate duration, procedures, benefits and possible risks of the present study. All study participants signed a written informed consent prior to any protocol procedures and enrollment in the study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankova, O., Korzh, O. Plasma catestatin levels are related to metabolic parameters in patients with essential hypertension and type 2 diabetes mellitus. Heart Vessels 39, 144–159 (2024). https://doi.org/10.1007/s00380-023-02318-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-023-02318-w

Keywords

Navigation