Skip to main content
Log in

Olive mill wastewater and hydroxytyrosol inhibits atherogenesis in apolipoprotein E-deficient mice

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The Mediterranean diet, which is characterized by high consumption of olive oil, prevents cardiovascular disease. Meanwhile, olive mill wastewater (OMWW), which is obtained as a byproduct during olive oil production, contains various promising bioactive components such as water-soluble polyphenols. Hydroxytyrosol (HT), the major polyphenol in OMWW, has anti-oxidative and anti-inflammatory properties; however, the atheroprotective effects of OMWW and HT remain to be fully understood. Here, we investigated the effect of OMWW and HT on atherogenesis. Male 8-week-old apolipoprotein E-deficient mice were fed a western-type diet supplemented with OMWW (0.30%w/w) or HT (0.02%w/w) for 20 weeks. The control group was fed a non-supplemented diet. OMWW and HT attenuated the development of atherosclerosis in the aortic arch as determined by Sudan IV staining (P < 0.01, respectively) without alteration of body weight, plasma lipid levels, and blood pressure. OMWW and HT also decreased the production of oxidative stress (P < 0.01, respectively) and the expression of NADPH oxidase subunits (e.g., NOX2 and p22phox) and inflammatory molecules (e.g. IL-1β and MCP-1) in the aorta. The results of in vitro experiments demonstrated that HT inhibited the expression of these molecules that were stimulated with LPS in RAW264.7 cells, murine macrophage-like cells. OMWW and HT similarly attenuated atherogenesis. HT is a major component of water-soluble polyphenols in OMWW, and it inhibited inflammatory activation of macrophages. Therefore, our results suggest that the atheroprotective effects of OMWW are at least partially attributable to the anti-inflammatory effects of HT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ApoE / :

Apolipoprotein E-deficient

Ctrl:

Control

EVOO:

Extra-virgin olive oil

HT:

Hydroxytyrosol

ICAM-1:

Intercellular adhesion molecule-1

IL:

Interleukin

MCP-1:

Monocyte chemoattractant protein-1

OMWW:

olive mill wastewater

PAI-1:

Plasminogen activator inhibitor-1

qPCR:

Quantitative real-time PCR

VCAM-1:

Vascular cell adhesion molecule-1

WTD:

Western-type diet

References

  1. Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32(9):2045–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Libby P, Everett BM (2019) Novel Antiatherosclerotic Therapies. Arterioscler Thromb Vasc Biol 39(4):538–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benjamin EJ, Larson MG, Keyes MJ, Mitchell GF, Vasan RS, Keaney JF Jr, Lehman BT, Fan S, Osypiuk E, Vita JA (2004) Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham Heart Study. Circulation 109(5):613–619

    Article  PubMed  Google Scholar 

  4. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D (2003) Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA 289(14):1799–1804

    Article  CAS  PubMed  Google Scholar 

  5. Esposito K, Maiorino MI, Ciotola M, Di Palo C, Scognamiglio P, Gicchino M, Petrizzo M, Saccomanno F, Beneduce F, Ceriello A, Giugliano D (2009) Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial. Ann Intern Med 151(5):306–314

    Article  PubMed  Google Scholar 

  6. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, D’Armiento M, D’Andrea F, Giugliano D (2004) Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292(12):1440–1446

    Article  CAS  PubMed  Google Scholar 

  7. Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Ruiz-Gutierrez V, Covas MI, Fiol M, Gomez-Gracia E, Lopez-Sabater MC, Vinyoles E, Aros F, Conde M, Lahoz C, Lapetra J, Saez G, Ros E, Investigators PS (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145(1):1–11

    Article  PubMed  Google Scholar 

  8. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, Gomez-Gracia E, Ruiz-Gutierrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pinto X, Basora J, Munoz MA, Sorli JV, Martinez JA, Fito M, Gea A, Hernan MA, Martinez-Gonzalez MA, Investigators PS (2018) Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 378(25):e34

    Article  CAS  PubMed  Google Scholar 

  9. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, Gomez-Gracia E, Ruiz-Gutierrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pinto X, Basora J, Munoz MA, Sorli JV, Martinez JA, Martinez-Gonzalez MA, Investigators PS (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368(14):1279–1290

    Article  CAS  PubMed  Google Scholar 

  10. Delgado-Lista J, Alcala-Diaz JF, Torres-Peña JD, Quintana-Navarro GM, Fuentes F, Garcia-Rios A, Ortiz-Morales AM, Gonzalez-Requero AI, Perez-Caballero AI, Yubero-Serrano EM, Rangel-Zuñiga OA, Camargo A, Rodriguez-Cantalejo F, Lopez-Segura F, Badimon L, Ordovas JM, Perez-Jimenez F, Perez-Martinez P, Lopez-Miranda J (2022) Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet 399(10338):1876–1885

    Article  CAS  PubMed  Google Scholar 

  11. Gillingham LG, Harris-Janz S, Jones PJ (2011) Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 46(3):209–228

    Article  CAS  PubMed  Google Scholar 

  12. Schwingshackl L, Hoffmann G (2014) Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis 13:154

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tierney AC, Roche HM (2007) The potential role of olive oil-derived MUFA in insulin sensitivity. Mol Nutr Food Res 51(10):1235–1248

    Article  CAS  PubMed  Google Scholar 

  14. Antonia Nunes M, Costa ASG, Bessada S, Santos J, Puga H, Alves RC, Freitas V, Oliveira M (2018) Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci Total Environ 644:229–236

    Article  CAS  PubMed  Google Scholar 

  15. Peroulis N, Androutsopoulos VP, Notas G, Koinaki S, Giakoumaki E, Spyros A, Manolopoulou E, Kargaki S, Tzardi M, Moustou E, Stephanou EG, Bakogeorgou E, Malliaraki N, Niniraki M, Lionis C, Castanas E, Kampa M (2019) Significant metabolic improvement by a water extract of olives: animal and human evidence. Eur J Nutr 58(6):2545–2560

    Article  CAS  PubMed  Google Scholar 

  16. Visioli F, Bernardini E (2011) Extra virgin olive oil’s polyphenols: biological activities. Curr Pharm Des 17(8):786–804

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez-Santiago M, Martin-Bautista E, Carrero JJ, Fonolla J, Baro L, Bartolome MV, Gil-Loyzaga P, Lopez-Huertas E (2006) One-month administration of hydroxytyrosol, a phenolic antioxidant present in olive oil, to hyperlipemic rabbits improves blood lipid profile, antioxidant status and reduces atherosclerosis development. Atherosclerosis 188(1):35–42

    Article  CAS  PubMed  Google Scholar 

  18. Karkovic Markovic A, Toric J, Barbaric M, Jakobusic Brala C (2019) Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules 24(10):2001

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mateos R, Martinez-Lopez S, Baeza Arevalo G, Amigo-Benavent M, Sarria B, Bravo-Clemente L (2016) Hydroxytyrosol in functional hydroxytyrosol-enriched biscuits is highly bioavailable and decreases oxidised low density lipoprotein levels in humans. Food Chem 205:248–256

    Article  CAS  PubMed  Google Scholar 

  20. Perrone MA, Gualtieri P, Gratteri S, Ali W, Sergi D, Muscoli S, Cammarano A, Bernardini S, Di Renzo L, Romeo F (2019) Effects of postprandial hydroxytyrosol and derivates on oxidation of LDL, cardiometabolic state and gene expression: a nutrigenomic approach for cardiovascular prevention. J Cardiovasc Med 20(7):419–426

    Article  CAS  Google Scholar 

  21. Tresserra-Rimbau A, Rimm EB, Medina-Remon A, Martinez-Gonzalez MA, Lopez-Sabater MC, Covas MI, Corella D, Salas-Salvado J, Gomez-Gracia E, Lapetra J, Aros F, Fiol M, Ros E, Serra-Majem L, Pinto X, Munoz MA, Gea A, Ruiz-Gutierrez V, Estruch R, Lamuela-Raventos RM, Investigators PS (2014) Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial. BMC Med 12:77

    Article  PubMed  PubMed Central  Google Scholar 

  22. Medina-Remon A, Casas R, Tressserra-Rimbau A, Ros E, Martinez-Gonzalez MA, Fito M, Corella D, Salas-Salvado J, Lamuela-Raventos RM, Estruch R, Investigators PS (2017) Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a substudy of the PREDIMED trial. Br J Clin Pharmacol 83(1):114–128

    Article  CAS  PubMed  Google Scholar 

  23. Hernaez A, Remaley AT, Farras M, Fernandez-Castillejo S, Subirana I, Schroder H, Fernandez-Mampel M, Munoz-Aguayo D, Sampson M, Sola R, Farre M, de la Torre R, Lopez-Sabater MC, Nyyssonen K, Zunft HJ, Covas MI, Fito M (2015) Olive oil polyphenols decrease LDL concentrations and LDL atherogenicity in men in a randomized controlled trial. J Nutr 145(8):1692–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Acin S, Navarro MA, Arbones-Mainar JM, Guillen N, Sarria AJ, Carnicer R, Surra JC, Orman I, Segovia JC, Torre Rde L, Covas MI, Fernandez-Bolanos J, Ruiz-Gutierrez V, Osada J (2006) Hydroxytyrosol administration enhances atherosclerotic lesion development in apo E deficient mice. J Biochem 140(3):383–391

    Article  CAS  PubMed  Google Scholar 

  25. Salim HM, Fukuda D, Higashikuni Y, Tanaka K, Hirata Y, Yagi S, Soeki T, Shimabukuro M, Sata M (2016) Dipeptidyl peptidase-4 inhibitor, linagliptin, ameliorates endothelial dysfunction and atherogenesis in normoglycemic apolipoprotein-E deficient mice. Vascul Pharmacol 79:16–23

    Article  CAS  PubMed  Google Scholar 

  26. Fukuda D, Nishimoto S, Aini K, Tanaka A, Nishiguchi T, Kim-Kaneyama JR, Lei XF, Masuda K, Naruto T, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Kusunose K, Yamada H, Soeki T, Imoto I, Akasaka T, Shimabukuro M, Sata M (2019) Toll-like receptor 9 plays a pivotal role in angiotensin II-induced atherosclerosis. J Am Heart Assoc 8(7):e010860

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 97(8):1916–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Giordano E, Dávalos A, Visioli F (2014) Chronic hydroxytyrosol feeding modulates glutathione-mediated oxido-reduction pathways in adipose tissue: a nutrigenomic study. Nutr Metab Cardiovasc Dis 24(10):1144–1150

    Article  CAS  PubMed  Google Scholar 

  29. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. Faseb J 22(3):659–661

    Article  CAS  PubMed  Google Scholar 

  30. González-Santiago M, Fonollá J, Lopez-Huertas E (2010) Human absorption of a supplement containing purified hydroxytyrosol, a natural antioxidant from olive oil, and evidence for its transient association with low-density lipoproteins. Pharmacol Res 61(4):364–370

    Article  PubMed  Google Scholar 

  31. Lopez-Huertas E, Fonolla J (2017) Hydroxytyrosol supplementation increases vitamin C levels in vivo: a human volunteer trial. Redox Biol 11:384–389

    Article  CAS  PubMed  Google Scholar 

  32. Yonezawa Y, Miyashita T, Nejishima H, Takeda Y, Imai K, Ogawa H (2018) Anti-inflammatory effects of olive-derived hydroxytyrosol on lipopolysaccharide-induced inflammation in RAW264.7 cells. J Vet Med Sci 80(12):1801–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yao F, Jin Z, Lv X, Zheng Z, Gao H, Deng Y, Liu Y, Chen L, Wang W, He J, Gu J, Lin R (2021) Hydroxytyrosol acetate inhibits vascular endothelial cell pyroptosis via the HDAC11 signaling pathway in atherosclerosis. Front Pharmacol 12:656272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vijakumaran U, Shanmugam J, Heng JW, Azman SS, Yazid MD, Haizum Abdullah NA, Sulaiman N (2023) Effects of hydroxytyrosol in endothelial functioning: a comprehensive review. Molecules 28(4):1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vijakumaran U, Yazid MD, Hj Idrus RB, Abdul Rahman MR, Sulaiman N (2021) Molecular action of hydroxytyrosol in attenuation of intimal hyperplasia: a scoping review. Front Pharmacol 12:663266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zrelli H, Matsuka M, Araki M, Zarrouk M, Miyazaki H (2011) Hydroxytyrosol induces vascular smooth muscle cells apoptosis through NO production and PP2A activation with subsequent inactivation of Akt. Planta Med 77(15):1680–1686

    Article  CAS  PubMed  Google Scholar 

  37. Hermans MP, Lempereur P, Salembier JP, Maes N, Albert A, Jansen O, Pincemail J (2020) Supplementation effect of a combination of olive (Olea europea L.) leaf and fruit extracts in the clinical management of hypertension and metabolic syndrome. Antioxidants 9(9):872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quirós-Fernández R, López-Plaza B, Bermejo LM, Palma-Milla S, Gómez-Candela C (2019) Supplementation with hydroxytyrosol and punicalagin improves early atherosclerosis markers involved in the asymptomatic phase of atherosclerosis in the adult population: a randomized, placebo-controlled, crossover trial. Nutrients 11(3):640

    Article  PubMed  PubMed Central  Google Scholar 

  39. Visioli F, Davalos A, de Las L, Hazas MC, Crespo MC, Tomé-Carneiro J (2020) An overview of the pharmacology of olive oil and its active ingredients. Br J Pharmacol 177(6):1316–1330

    Article  CAS  PubMed  Google Scholar 

  40. Del Saz-Lara A, de Las L, Hazas MC, Visioli F, Dávalos A (2022) Nutri-epigenetic effects of phenolic compounds from extra virgin olive oil: a systematic review. Adv Nutr 13(5):2039–2060

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gutierrez VR, de la Puerta R, Catala A (2001) The effect of tyrosol, hydroxytyrosol and oleuropein on the non-enzymatic lipid peroxidation of rat liver microsomes. Mol Cell Biochem 217(1–2):35–41

    Article  CAS  PubMed  Google Scholar 

  42. Rosignoli P, Fuccelli R, Fabiani R, Servili M, Morozzi G (2013) Effect of olive oil phenols on the production of inflammatory mediators in freshly isolated human monocytes. J Nutr Biochem 24(8):1513–1519

    Article  CAS  PubMed  Google Scholar 

  43. Baci D, Gallazzi M, Cascini C, Tramacere M, De Stefano D, Bruno A, Noonan DM, Albini A (2019) Downregulation of pro-inflammatory and pro-angiogenic pathways in prostate cancer cells by a polyphenol-rich extract from olive mill wastewater. Int J Mol Sci 20(2):307

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim SY, Lee JG, Cho WS, Cho KH, Sakong J, Kim JR, Chin BR, Baek SH (2010) Role of NADPH oxidase-2 in lipopolysaccharide-induced matrix metalloproteinase expression and cell migration. Immunol Cell Biol 88(2):197–204

    Article  CAS  PubMed  Google Scholar 

  45. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5):494–501

    Article  CAS  PubMed  Google Scholar 

  46. Vendrov AE, Hakim ZS, Madamanchi NR, Rojas M, Madamanchi C, Runge MS (2007) Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells. Arterioscler Thromb Vasc Biol 27(12):2714–2721

    Article  CAS  PubMed  Google Scholar 

  47. Shirai T, Hilhorst M, Harrison DG, Goronzy JJ, Weyand CM (2015) Macrophages in vascular inflammation–From atherosclerosis to vasculitis. Autoimmunity 48(3):139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Castro C, Campistol JM, Barettino D, Andres V (2005) Transcriptional profiling of early onset diet-induced atherosclerosis in apolipoprotein E-deficient mice. Front Biosci 10:1932–1945

    Article  CAS  PubMed  Google Scholar 

  49. Pastor A, Rodríguez-Morató J, Olesti E, Pujadas M, Pérez-Mañá C, Khymenets O, Fitó M, Covas MI, Solá R, Motilva MJ, Farré M, de la Torre R (2016) Analysis of free hydroxytyrosol in human plasma following the administration of olive oil. J Chromatogr A 1437:183–190

    Article  CAS  PubMed  Google Scholar 

  50. Crespo MC, Tomé-Carneiro J, Dávalos A, Visioli F (2018) Pharma-nutritional properties of olive oil phenols. Transfer of new findings to human nutrition. Foods 7(6):90

    Article  PubMed  PubMed Central  Google Scholar 

  51. Visioli F, Wolfram R, Richard D, Abdullah MI, Crea R (2009) Olive phenolics increase glutathione levels in healthy volunteers. J Agric Food Chem 57(5):1793–1796

    Article  CAS  PubMed  Google Scholar 

  52. Léger CL, Carbonneau MA, Michel F, Mas E, Monnier L, Cristol JP, Descomps B (2005) A thromboxane effect of a hydroxytyrosol-rich olive oil wastewater extract in patients with uncomplicated type I diabetes. Eur J Clin Nutr 59(5):727–730

    Article  PubMed  Google Scholar 

  53. Martínez N, Herrera M, Frías L, Provencio M, Pérez-Carrión R, Díaz V, Morse M, Crespo MC (2019) A combination of hydroxytyrosol, omega-3 fatty acids and curcumin improves pain and inflammation among early stage breast cancer patients receiving adjuvant hormonal therapy: results of a pilot study. Clin Transl Oncol 21(4):489–498

    Article  PubMed  Google Scholar 

  54. Albini A, Festa MMG, Ring N, Baci D, Rehman M, Finzi G, Sessa F, Zacchigna S, Bruno A, Noonan DM (2021) A polyphenol-rich extract of olive mill wastewater enhances cancer chemotherapy effects, while mitigating cardiac toxicity. Front Pharmacol 12:694762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cappelli K, Ferlisi F, Mecocci S, Maranesi M, Trabalza-Marinucci M, Zerani M, Dal Bosco A, Acuti G (2021) Dietary supplementation of olive mill waste water polyphenols in rabbits: evaluation of the potential effects on hepatic apoptosis, inflammation and metabolism through RT-qPCR approach. Animals 11(10):2932

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tundis R, Conidi C, Loizzo MR, Sicari V, Romeo R, Cassano A (2021) Concentration of bioactive phenolic compounds in olive mill wastewater by direct contact membrane distillation. Molecules 26(6):1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yates AA, Erdman JW Jr, Shao A, Dolan LC, Griffiths JC (2017) Bioactive nutrients—time for tolerable upper intake levels to address safety. Regul Toxicol Pharmacol 84:94–101

    Article  CAS  PubMed  Google Scholar 

  58. Babich H, Visioli F (2003) In vitro cytotoxicity to human cells in culture of some phenolics from olive oil. Farmaco 58(5):403–407

    Article  CAS  PubMed  Google Scholar 

  59. Auñon-Calles D, Canut L, Visioli F (2013) Toxicological evaluation of pure hydroxytyrosol. Food Chem Toxicol 55:498–504

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Shintaro Okamoto and Etsuko Uematsu for their technical assistance.\

Funding

This work was partially supported by JSPS Kakenhi Grants (Number 19K08584 to D.F. and Number 19H03654 to M.S.), Bristol-Myers Squibb Research Grants (D.F.), The Uehara Memorial Foundation (D.F.), Takeda Science Foundation (M.S.), and the Vehicle Racing Commemorative Foundation (M.S.). The funders had no role in the study design, data collection and analysis, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoya Hara.

Ethics declarations

Conflict of interest

The Department of Cardio-Diabetes Medicine, Tokushima University Graduate School is supported in part by unrestricted research grants from Boehringer Ingelheim. The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, T., Fukuda, D., Ganbaatar, B. et al. Olive mill wastewater and hydroxytyrosol inhibits atherogenesis in apolipoprotein E-deficient mice. Heart Vessels 38, 1386–1394 (2023). https://doi.org/10.1007/s00380-023-02290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-023-02290-5

Keywords

Navigation