Skip to main content
Log in

Transcranial Doppler for stratification of high-risk morphology of patent foramen ovale in patients with cryptogenic stroke

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Microbubble testing using transcranial Doppler (TCD) is an important screening tool for diagnosing paradoxical cerebral embolism with high-risk PFO. However, little is known about the association between the microbubble test by TCD and the features of high-risk PFO evaluated by transesophageal echocardiography (TEE). We studied 101 consecutive patients at Showa University, from April 2019 to October 2020, who underwent both TCD and TEE with a sufficient Valsalva maneuver and who were strongly suspected by neurologists as cryptogenic stroke. According to the appearance of microbubbles as high-intensity transient signals (HITS), the TCD grade was stratified into three categories based on the criteria (A: none, no HITS, B: small; 1–10 HITS, and C: large; > 10 HITS, or an uncountable number of HITS). Among patients with RLS through the PFO in TEE, high-risk morphological features of PFO for cerebral embolism were evaluated as follows: (1) tunnel height, (2) tunnel length, (3) total excursion distance of the atrial septum into the right and left atrium, (4) existence of Eustachian valve or Chiari network, (5) angle of PFO from the inferior vena cava, and (6) large shunt (20 or more microbubbles). Of 101 patients (TCD grade; Group A = 49, Group B = 26, Group C = 26), RLS through PFO was detected in 37 patients (grade A = 8, grade B = 6, grade C = 23) by TEE. Among PFO-positive patients, tunnel height, length, total excursion distance into the right and left atria, angle of PFO from the inferior vena cava, and frequency of large shunt in TEE were significantly larger in grade C than in grade A and B (p < 0.05). Additionally, grade C patients had significantly more forms of high-risk PFOs than those in grades A and B when the six features of high-risk PFO were compared. A multivariate logistic regression demonstrated that the tunnel length of PFO and the presence of large shunt in TEE were independently associated with large HITS in TCD (odds ratio: 1.18 and 49.5, 95% confidence interval 1.043–1.337 and 10.05–244.3, p = 0.0086 and p < 0.0001, respectively). In conclusion, the existence of a large HITS detected by TCD may have a screening advantage in predicting the high-risk morphologies of PFO that can cause paradoxical cerebral embolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CS:

Cryptogenic stroke

ESUS:

Embolic stroke of undetermined source

TCD:

Transcranial Doppler

TEE:

Transesophageal echocardiography

HITS:

High-intensity transient signals

PFO:

Patent foramen ovale

RLS:

Right-to-left shunt

References

  1. Mohr JP (1988) Cryptogenic stroke. N Engl J Med 318(18):1197–1198

    Article  CAS  Google Scholar 

  2. Hart RG, Diener HC, Coutts SB, Easton JD, Granger CB, O’Donnell MJ, Sacco RL, Connolly SJ (2014) Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol 13(4):429–438

    Article  Google Scholar 

  3. Hagen PT, Scholz DG, Edwards WD (1984) Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc 59(1):17–20

    Article  CAS  Google Scholar 

  4. Hara H, Virmani R, Ladich E, Mackey-Bojack S, Titus J, Reisman M, Gray W, Nakamura M, Mooney M, Poulose A, Schwartz RS (2005) Patent foramen ovale: current pathology, pathophysiology, and clinical status. J Am Coll Cardiol 46(9):1768–1776

    Article  Google Scholar 

  5. Lechat P, Mas JL, Lascault G, Loron P, Theard M, Klimczac M, Drobinski G, Thomas D, Grosgogeat Y (1988) Prevalence of patent foramen ovale in patients with stroke. N Engl J Med 318(18):1148–1152

    Article  CAS  Google Scholar 

  6. Mojadidi MK, Zaman MO, Elgendy IY, Mahmoud AN, Patel NK, Agarwal N, Tobis JM, Meier B (2018) Cryptogenic stroke and patent foramen ovale. J Am Coll Cardiol 71(9):1035–1043

    Article  Google Scholar 

  7. Wu LA, Malouf JF, Dearani JA, Hagler DJ, Reeder GS, Petty GW, Khandheria BK (2004) Patent foramen ovale in cryptogenic stroke: current understanding and management options. Arch Intern Med 164(9):950–956

    Article  Google Scholar 

  8. Khan AR, Bin Abdulhak AA, Sheikh MA, Khan S, Erwin PJ, Tleyjeh I, Khuder S, Eltahawy EA (2013) Device closure of patent foramen ovale versus medical therapy in cryptogenic stroke: a systematic review and meta-analysis. JACC Cardiovasc Interv 6(12):1316–1323

    Article  Google Scholar 

  9. Shah R, Nayyar M, Jovin IS, Rashid A, Bondy BR, Fan TM, Flaherty MP, Rao SV (2018) Device closure versus medical therapy alone for patent foramen ovale in patients with cryptogenic stroke: a systematic review and meta-analysis. Ann Intern Med 168(5):335–342

    Article  Google Scholar 

  10. Anzola GP (2004) Transcranial Doppler: Cinderella in the assessment of patent foramen ovale in stroke patients. Stroke 35(6):e137

    Article  Google Scholar 

  11. Nemec JJ, Marwick TH, Lorig RJ, Davison MB, Chimowitz MI, Litowitz H, Salcedo EE (1991) Comparison of transcranial Doppler ultrasound and transesophageal contrast echocardiography in the detection of interatrial right-to-left shunts. Am J Cardiol 68(15):1498–1502

    Article  CAS  Google Scholar 

  12. Tobe J, Bogiatzi C, Munoz C, Tamayo A, Spence JD (2016) Transcranial Doppler is complementary to echocardiography for detection and risk stratification of patent foramen ovale. Can J Cardiol 32(8):986.e989-986.e916

    Article  Google Scholar 

  13. Blersch WK, Draganski BM, Holmer SR, Koch HJ, Schlachetzki F, Bogdahn U, Hölscher T (2002) Transcranial duplex sonography in the detection of patent foramen ovale. Radiology 225(3):693–699

    Article  Google Scholar 

  14. Komatsu T, Terasawa Y, Arai A, Sakuta K, Mitsumura H, Iguchi Y (2017) Transcranial color-coded sonography of vertebral artery for diagnosis of right-to-left shunts. J Neurol Sci 376:97–101

    Article  Google Scholar 

  15. Seidel G, Kaps M, Gerriets T (1995) Potential and limitations of transcranial color-coded sonography in stroke patients. Stroke 26(11):2061–2066

    Article  CAS  Google Scholar 

  16. De Castro S, Cartoni D, Fiorelli M, Rasura M, Anzini A, Zanette EM, Beccia M, Colonnese C, Fedele F, Fieschi C, Pandian NG (2000) Morphological and functional characteristics of patent foramen ovale and their embolic implications. Stroke 31(10):2407–2413

    Article  Google Scholar 

  17. Goel SS, Tuzcu EM, Shishehbor MH, de Oliveira EI, Borek PP, Krasuski RA, Rodriguez LL, Kapadia SR (2009) Morphology of the patent foramen ovale in asymptomatic versus symptomatic (stroke or transient ischemic attack) patients. Am J Cardiol 103(1):124–129

    Article  Google Scholar 

  18. Nakayama R, Takaya Y, Akagi T, Watanabe N, Ikeda M, Nakagawa K, Toh N, Ito H (2019) Identification of high-risk patent foramen ovale associated with cryptogenic stroke: development of a scoring system. J Am Soc Echocardiogr 32(7):811–816

    Article  Google Scholar 

  19. Serena J, Segura T, Perez-Ayuso MJ, Bassaganyas J, Molins A, Dávalos A (1998) The need to quantify right-to-left shunt in acute ischemic stroke: a case-control study. Stroke 29(7):1322–1328

    Article  CAS  Google Scholar 

  20. Kent DM, Ruthazer R, Weimar C, Mas JL, Serena J, Homma S, Di Angelantonio E, Di Tullio MR, Lutz JS, Elkind MS, Griffith J, Jaigobin C, Mattle HP, Michel P, Mono ML, Nedeltchev K, Papetti F, Thaler DE (2013) An index to identify stroke-related vs incidental patent foramen ovale in cryptogenic stroke. Neurology 81(7):619–625

    Article  Google Scholar 

  21. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774

    Article  CAS  Google Scholar 

  22. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, Kamel H, Kernan WN, Kittner SJ, Leira EC, Lennon O, Meschia JF, Nguyen TN, Pollak PM, Santangeli P, Sharrief AZ, Smith SC Jr, Turan TN, Williams LS (2021) 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke 52(7):e364–e467

    Article  Google Scholar 

  23. Bogdahn U, Becker G, Winkler J, Greiner K, Perez J, Meurers B (1990) Transcranial color-coded real-time sonography in adults. Stroke 21(12):1680–1688

    Article  CAS  Google Scholar 

  24. Baumgartner RW (2003) Transcranial color duplex sonography in cerebrovascular disease: a systematic review. Cerebrovasc Dis 16(1):4–13

    Article  Google Scholar 

  25. Cabanes L, Mas JL, Cohen A, Amarenco P, Cabanes PA, Oubary P, Chedru F, Guérin F, Bousser MG, de Recondo J (1993) Atrial septal aneurysm and patent foramen ovale as risk factors for cryptogenic stroke in patients less than 55 years of age a study using transesophageal echocardiography. Stroke 24(12):1865–1873

    Article  CAS  Google Scholar 

  26. Mas JL, Arquizan C, Lamy C, Zuber M, Cabanes L, Derumeaux G, Coste J (2001) Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N Engl J Med 345(24):1740–1746

    Article  CAS  Google Scholar 

  27. Pearson AC, Nagelhout D, Castello R, Gomez CR, Labovitz AJ (1991) Atrial septal aneurysm and stroke: a transesophageal echocardiographic study. J Am Coll Cardiol 18(5):1223–1229

    Article  CAS  Google Scholar 

  28. Belvis R, Leta RG, Marti-Fabregas J, Cocho D, Carreras F, Pons-Llado G, Marti-Vilalta JL (2006) Almost perfect concordance between simultaneous transcranial Doppler and transesophageal echocardiography in the quantification of right-to-left shunts. J Neuroimaging 16(2):133–138

    Article  Google Scholar 

  29. Horner S, Ni XS, Weihs W, Harb S, Augustin M, Duft M, Niederkorn K (1997) Simultaneous bilateral contrast transcranial doppler monitoring in patients with intracardiac and intrapulmonary shunts. J Neurol Sci 150(1):49–57

    Article  CAS  Google Scholar 

  30. Mas JL, Derumeaux G, Guillon B, Massardier E, Hosseini H, Mechtouff L, Arquizan C, Béjot Y, Vuillier F, Detante O, Guidoux C, Canaple S, Vaduva C, Dequatre-Ponchelle N, Sibon I, Garnier P, Ferrier A, Timsit S, Robinet-Borgomano E, Sablot D, Lacour JC, Zuber M, Favrole P, Pinel JF, Apoil M, Reiner P, Lefebvre C, Guérin P, Piot C, Rossi R, Dubois-Randé JL, Eicher JC, Meneveau N, Lusson JR, Bertrand B, Schleich JM, Godart F, Thambo JB, Leborgne L, Michel P, Pierard L, Turc G, Barthelet M, Charles-Nelson A, Weimar C, Moulin T, Juliard JM, Chatellier G (2017) Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N Engl J Med 377(11):1011–1021

    Article  CAS  Google Scholar 

  31. Saver JL, Carroll JD, Thaler DE, Smalling RW, MacDonald LA, Marks DS, Tirschwell DL (2017) Long-term outcomes of patent foramen ovale closure or medical therapy after stroke. N Engl J Med 377(11):1022–1032

    Article  Google Scholar 

  32. Søndergaard L, Kasner SE, Rhodes JF, Andersen G, Iversen HK, Nielsen-Kudsk JE, Settergren M, Sjöstrand C, Roine RO, Hildick-Smith D, Spence JD, Thomassen L (2017) Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. N Engl J Med 377(11):1033–1042

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the entire staff of the Ultrasound Examination Center, Showa University Hospital and we would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhide Mochizuki.

Ethics declarations

Conflict of interest

All authors have nothing to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chino, S., Mochizuki, Y., Mizuma, K. et al. Transcranial Doppler for stratification of high-risk morphology of patent foramen ovale in patients with cryptogenic stroke. Heart Vessels 37, 2119–2127 (2022). https://doi.org/10.1007/s00380-022-02117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-022-02117-9

Keywords

Navigation