Skip to main content
Log in

Systemic arterial pulsatility index (SAPi) predicts adverse outcomes in advanced heart failure patients

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Ventriculo–arterial (VA) coupling has been shown to have physiologic importance in heart failure (HF). We hypothesized that the systemic arterial pulsatility index (SAPi), a measure that integrates pulse pressure and a proxy for left ventricular end-diastolic pressure, would be associated with adverse outcomes in advanced HF. We evaluated the SAPi ([systemic systolic blood pressure-systemic diastolic blood pressure]/pulmonary artery wedge pressure) obtained from the final hemodynamic measurement in patients randomized to therapy guided by a pulmonary arterial catheter (PAC) and with complete data in the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) trial. Cox proportional hazards regression was performed for the outcomes of (a) death, transplant, left ventricular assist device (DTxLVAD) or hospitalization, (DTxLVADHF) and (b) DTxLVAD. Among 142 patients (mean age 56.8 ± 13.3 years, 30.3% female), the median SAPi was 2.57 (IQR 1.63–3.45). Increasing SAPi was associated with significant reductions in DTxLVAD (HR 0.60 per unit increase in SAPi, 95% CI 0.44–0.84) and DTxLVADHF (HR 0.81 per unit increase, 95% CI 0.70–0.95). Patients with a SAPi ≤ 2.57 had a marked increase in both outcomes, including more than twice the risk of DTxLVAD (HR 2.19, 95% CI 1.11–4.30) over 6 months. Among advanced heart failure patients with invasive hemodynamic monitoring in the ESCAPE trial, SAPi was strongly associated with adverse clinical outcomes. These findings support further investigation of the SAPi to guide treatment and prognosis in HF undergoing invasive hemodynamic monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

DBP:

Diastolic blood pressure

CI:

Cardiac index

IQR:

Interquartile range

LVSWI:

Left ventricular stroke work index

LVAD:

Left ventricular assist device

PAC:

Pulmonary arterial catheter

PADP:

Pulmonary arterial diastolic pressure

PASP:

Pulmonary arterial systolic pressure

PAWP:

Pulmonary artery wedge pressure

PP:

Pulse pressure

RAP:

Right atrial pressure

ROC:

Receiver operating characteristic

RV:

Right ventricle

SAPi:

Systemic arterial pulsatility index

SBP:

Systolic blood pressure

VAC:

Ventriculo–arterial coupling

References

  1. Bilchick KC, Mejia-Lopez E, McCullough P, Breathett K, Kennedy JL, Tallaj J, Bergin J, Pamboukian S, Abuannadi M, Mazimba S (2018) Clinical impact of changes in hemodynamic indices of contractile function during treatment of acute decompensated heart failure. J Card Fail 24(1):43–50

    Article  Google Scholar 

  2. Covell JW, Ross J Jr, Sonnenblick EH, Braunwald E (1966) Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart. Circ Res 19(2):364–372

    Article  CAS  Google Scholar 

  3. Chirinos JA, Sweitzer N (2017) Ventricular–arterial coupling in chronic heart failure. Card Fail Rev 3(1):12–18

    Article  Google Scholar 

  4. Borlaug BA, Kass DA (2011) Ventricular–vascular interaction in heart failure. Cardiol Clin 29(3):447–459

    Article  Google Scholar 

  5. Kass DA (2005) Ventricular arterial stiffening: integrating the pathophysiology. Hypertension 46(1):185–193

    Article  CAS  Google Scholar 

  6. Westerhof N, O’Rourke MF (1995) Haemodynamic basis for the development of left ventricular failure in systolic hypertension and for its logical therapy. J Hypertens 13(9):943–952

    Article  CAS  Google Scholar 

  7. Weber T, Chirinos JA (2018) Pulsatile arterial haemodynamics in heart failure. Eur Heart J 39(43):3847–3854

    Article  CAS  Google Scholar 

  8. Parragh S, Hametner B, Bachler M, Kellermair J, Eber B, Wassertheurer S, Weber T (2015) Determinants and covariates of central pressures and wave reflections in systolic heart failure. Int J Cardiol 190:308–314

    Article  Google Scholar 

  9. Schillaci G, Di Luzio S, Coluccini M, Gonzini L, Porcu M, Pozzar F, Maggioni AP, Italian Network of Congestive Heart Failure Registry (2004) A low pulse pressure is an independent predictor of mortality in heart failure: data from a large nationwide cardiology database (IN-CHF Registry). Ital Heart J 5(12):892–898

    PubMed  Google Scholar 

  10. Petrie CJ, Damman K, Jhund PS, Hillege HL, Van Veldhuisen DJ, Voors AA (2014) Low pulse pressure as a poor-man’s indicator of a low cardiac index in patients with severe cardiac dysfunction. J Cardiovasc Med (Hagerstown) 15(4):315–321

    Article  Google Scholar 

  11. Aronson D, Burger AJ (2004) Relation between pulse pressure and survival in patients with decompensated heart failure. Am J Cardiol 93(6):785–788

    Article  Google Scholar 

  12. Sweitzer NK, Hetzel SJ, Skalski J, Velez M, Eggleston K, Mitchell GF (2013) Left ventricular responses to acute changes in late systolic pressure augmentation in older adults. Am J Hypertens 26(7):866–871

    Article  CAS  Google Scholar 

  13. Cooper R, Ghali J, Simmons BE, Castaner A (1991) Elevated pulmonary artery pressure an independent predictor of mortality. Chest 99(1):112–120

    Article  CAS  Google Scholar 

  14. Cooper LB, Mentz RJ, Stevens SR, Felker GM, Lombardi C, Metra M, Stevenson LW, O’Connor CM, Milano CA, Patel CB, Rogers JG (2016) Hemodynamic predictors of heart failure morbidity and mortality: fluid or flow? J Card Fail 22(3):182–189

    Article  Google Scholar 

  15. Binanay C, Califf RM, Hasselblad V, O’Connor CM, Shah MR, Sopko G, Stevenson LW, Francis GS, Leier CV, Miller LW, ESCAPE Investigators and ESCAPE Study Coordinators (2005) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 294(13):1625–1633

    Article  Google Scholar 

  16. Orime Y, Shiono M, Nakata K, Hata M, Sezai A, Yamada H, Iida M, Kashiwazaki S, Nemoto M, Kinoshita J, Kojima T, Saito T, Sezai Y (1996) The role of pulsatility in end-organ microcirculation after cardiogenic shock. ASAIO J 42(5):M724–M729

    Article  CAS  Google Scholar 

  17. Ji B, Undar A (2007) Comparison of perfusion modes on microcirculation during acute and chronic cardiac support: is there a difference? Perfusion 22(2):115–119

    Article  Google Scholar 

  18. Saito S, Westaby S, Piggot D, Dudnikov S, Robson D, Catarino PA, Clelland C, Nojiri C (2002) End-organ function during chronic nonpulsatile circulation. Ann Thorac Surg 74(4):1080–1085

    Article  Google Scholar 

  19. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311(13):819–823

    Article  CAS  Google Scholar 

  20. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Failure Society of America. J Card Fail 23(8):628–651

    Article  Google Scholar 

  21. Franklin SS, Gustin WT, Wong ND, Larson MG, Weber MA, Kannel WB, Levy D (1997) Hemodynamic patterns of age-related changes in blood pressure the Framingham Heart Study. Circulation 96(1):308–315

    Article  CAS  Google Scholar 

  22. Chae CU, Pfeffer MA, Glynn RJ, Mitchell GF, Taylor JO, Hennekens CH (1999) Increased pulse pressure and risk of heart failure in the elderly. JAMA 281(7):634–639

    Article  CAS  Google Scholar 

  23. Laskey WK, Wu J, Schulte PJ, Hernandez AF, Yancy CW, Heidenreich PA, Bhatt DL, Fonarow GC (2016) Association of arterial pulse pressure with long-term clinical outcomes in patients with heart failure. JACC Heart Fail 4(1):42–49

    Article  Google Scholar 

  24. Stergiopulos N, Westerhof N (1998) Determinants of pulse pressure. Hypertension 32(3):556–559

    Article  CAS  Google Scholar 

  25. Kelly R, Hayward C, Avolio A, O’Rourke M (1989) Noninvasive determination of age-related changes in the human arterial pulse. Circulation 80(6):1652–1659

    Article  CAS  Google Scholar 

  26. Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, De Carlo M, Delgado V, Lancellotti P, Lekakis J, Mohty D, Nihoyannopoulos P, Parissis J, Rizzoni D, Ruschitzka F, Seferovic P, Stabile E, Tousoulis D, Vinereanu D, Vlachopoulos C, Vlastos D, Xaplanteris P, Zimlichman R, Metra M (2019) The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail 21(4):402–424

    Article  Google Scholar 

  27. Nohria A, Tsang SW, Fang JC, Lewis EF, Jarcho JA, Mudge GH, Stevenson LW (2003) Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol 41(10):1797–1804

    Article  Google Scholar 

  28. Lucas C, Johnson W, Hamilton MA, Fonarow GC, Woo MA, Flavell CM, Creaser JA, Stevenson LW (2000) Freedom from congestion predicts good survival despite previous class IV symptoms of heart failure. Am Heart J 140(6):840–847

    Article  CAS  Google Scholar 

  29. Cotter G, Cotter OM, Kaluski E (2008) Hemodynamic monitoring in acute heart failure. Crit Care Med 36(1 Suppl):S40-43

    Article  CAS  Google Scholar 

  30. Doshi R, Patel H, Shah P (2018) Pulmonary artery catheterization use and mortality in hospitalizations with HFrEF and HFpEF: a nationally representative trend analysis from 2005 to 2014. Int J Cardiol 269:289–291

    Article  Google Scholar 

  31. Mazimba S, Kennedy JLW, Zhuo D, Bergin J, Abuannadi M, Tallaj J, Bilchick KC (2016) Decreased pulmonary arterial proportional pulse pressure after pulmonary artery catheter optimization for advanced heart failure is associated with adverse clinical outcomes. J Card Fail 22(12):954–961

    Article  Google Scholar 

  32. Mwansa H, Bilchick KC, Parker AM, Harding W, Ruth B, Kennedy JLW, Mysore M, Kwon Y, Mihalek A, Mazimba S (2017) Decreased pulmonary arterial proportional pulse pressure is associated with increased mortality in group 1 pulmonary hypertension. Clin Cardiol 40(11):988–992

    Article  Google Scholar 

  33. Tehrani BN, Truesdell AG, Sherwood MW, Desai S, Tran HA, Epps KC, Singh R, Psotka M, Shah P, Cooper LB, Rosner C, Raja A, Barnett SD, Saulino P, deFilippi CR, Gurbel PA, Murphy CE, O’Connor CM (2019) Standardized team-based care for cardiogenic shock. J Am Coll Cardiol 73(13):1659–1669

    Article  Google Scholar 

  34. Fincke R, Hochman JS, Lowe AM, Menon V, Slater JN, Webb JG, LeJemtel TH, Cotter G, SHOCK Investigators (2004) Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry. J Am Coll Cardiol 44(2):340–348

    Article  Google Scholar 

  35. Cesini S, Bhagra S, Pettit SJ (2020) Low pulmonary artery pulsatility index is associated with adverse outcomes in ambulatory patients with advanced heart failure. J Card Fail 26(4):352–359

    Article  Google Scholar 

  36. Kang G, Ha R, Banerjee D (2016) Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant 35(1):67–73

    Article  Google Scholar 

  37. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283(9):447–451

    Article  CAS  Google Scholar 

  38. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM, DAPA-HF Trial Committees and Investigators (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381(21):1995–2008

    Article  CAS  Google Scholar 

  39. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Böhm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F, EMPEROR-Reduced Trial Investigators (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383(15):1413–1424

    Article  CAS  Google Scholar 

  40. Striepe K, Jumar A, Ott C, Karg MV, Schneider MP, Kannenkeril D, Schmieder RE (2017) Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation 136(12):1167–1169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the help of the National Heart, Lung and Blood Institutes of in making its database available for this secondary analysis.

Funding

This research received no grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sula Mazimba.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

380_2022_2070_MOESM1_ESM.tif

Supplementary Fig. 1 ROC analysis for SAPi. Receiver Operating Characteristic (ROC) curves are shown for the heart failure outcome based on SAPi (A), pulmonary artery wedge pressure (B), and systemic pulse pressure (C) (TIF 155 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazimba, S., Mwansa, H., Breathett, K. et al. Systemic arterial pulsatility index (SAPi) predicts adverse outcomes in advanced heart failure patients. Heart Vessels 37, 1719–1727 (2022). https://doi.org/10.1007/s00380-022-02070-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-022-02070-7

Keywords

Navigation