Skip to main content

Advertisement

Log in

Downregulation of lncRNA SNHG16 inhibits vascular smooth muscle cell proliferation and migration in cerebral atherosclerosis by targeting the miR-30c-5p/SDC2 axis

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Atherosclerosis (AS) is the basic lesion underlying the occurrence and development of cerebrovascular diseases. Abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in AS. We aimed to explore the role of SNHG16 in AS and the molecular mechanism of VSMC involvement in the regulation of AS. The expression levels of SNHG16, miR-30c-5p and SDC2 were detected by qRT-PCR. CCK-8, wound healing and Transwell assays were used to assess ox-LDL-induced VSMC proliferation, migration, and invasion, respectively. Western blot analysis was used to detect SDC2 and MEK/ERK pathway-related protein levels. A dual-luciferase reporter assay confirmed the binding of SNHG16 with miR-30c-5p and miR-30c-5p with SDC2. SNHG16 and SDC2 expression was upregulated in patients with AS and ox-LDL-induced VSMCs, while miR-30c-5p was downregulated. Ox-LDL-induced VSMC proliferation and migration were increased, and the MEK/ERK signalling pathway was activated. MiR-30c-5p was targeted to SNHG16 and SDC2. Downregulating SNHG16 or upregulating miR-30c-5p inhibited ox-LDL-induced VSMC proliferation and migration and inhibited MEK/ERK signalling pathway activation. In contrast, downregulating miR-30c-5p or upregulating SDC2 reversed the effects of downregulating SNHG16 or upregulating miR-30c-5p. Furthermore, downregulating SDC2 inhibited ox-LDL-induced proliferation and migration of VSMCs and inhibited activation of the MEK/ERK signalling pathway, while upregulating lncRNA SNHG16 reversed the effects of downregulating SDC2. Downregulation of SNHG16 inhibited VSMC proliferation and migration in AS by targeting the miR-30c-5p/SDC2 axis. This study provides a possible therapeutic approach to AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AS:

Atherosclerosis

SDC2:

Syndecan2

VSMCs:

Vascular smooth muscle cells

LncRNAs:

Long noncoding RNAs

SNHG16:

LncRNA small nucleolus RNA host gene 16

CeRNAs:

Competing endogenous RNA

CCK-8:

Cell Counting Kit 8

MiRNAs:

MicroRNAs

3' UTR:

3 'Untranslated region

CTA:

CT angiography

sh-SNHG16:

Short hairpin targeting lncRNA SNHG16

ox-LDL:

Oxidized low density lipoprotein

WT:

Wild-type

MUT:

Mutant

qRT-PCR:

Quantitative real-time PCR

References

  1. Poston RN (2019) Atherosclerosis: integration of its pathogenesis as a self-perpetuating propagating inflammation: a review. Cardiovasc Endocrinol Metab 8(2):51–61

    Article  CAS  Google Scholar 

  2. Pirillo A, Bonacina F, Norata GD, Catapano AL (2018) The interplay of lipids, lipoproteins, and immunity in atherosclerosis. Curr Atheroscler Rep 20(3):12

    Article  Google Scholar 

  3. Zheng X (2019) Research progress on the relationship between sphingomyelin signaling pathway and atherosclerosis. Chin J Arterioscler 27(1):87–92

  4. Zhang L, Luo X, Chen F, Yuan W, Xiao X, Zhang X, Dong Y, Zhang Y, Liu Y (2018) LncRNA SNHG1 regulates cerebrovascular pathologies as a competing endogenous RNA through HIF-1α/VEGF signaling in ischemic stroke. J Cell Biochem 119(7):5460–5472

    Article  CAS  Google Scholar 

  5. Cui Y, Li C, Zeng C, Li J, Zhu Z, Chen W, Huang A, Qi X (2018) Tongmai Yangxin pills antioxidative stress alleviates cisplatin-induced cardiotoxicity: Network pharmacology analysis and experimental evidence. Biomed Pharmacother 108:1081–1089

    Article  Google Scholar 

  6. Cui Y, Qi X, Huang A, Li J, Liu K (2018) Differential and predictive value of galectin-3 and soluble suppression of tumorigenicity-2 (sST2) in heart failure with preserved ejection fraction. Med Sci Monit 24:5139–5146

    Article  CAS  Google Scholar 

  7. Ji R, Gu Y, Zhang J, Gao C, Gao W, Zang X (2020) TRIM7 promotes proliferation and migration of vascular smooth muscle cells in atherosclerosis through activating c-Jun/AP-1. IUBMB Life 72(2):247–258

    Article  CAS  Google Scholar 

  8. Li XG, Wang YB (2019) SRPK1 gene silencing promotes vascular smooth muscle cell proliferation and vascular remodeling via inhibition of the PI3K/Akt signaling pathway in a rat model of intracranial aneurysms. CNS Neurosci Ther 25(2):233–244

    Article  CAS  Google Scholar 

  9. Shen Y, Liu S, Fan J, Jin Y, Tian B, Zheng X (2017) Nuclear retention of the lncRNA SNHG1 by doxorubicin attenuates hnRNPC–p53 protein interactions. EMBO Rep 18(4):536–548

    Article  CAS  Google Scholar 

  10. Hung J, Miscianinov V, Sluimer JC, Newby DE (2018) Targeting non-coding RNA in vascular biology and disease. Front Physiol 9:1655

    Article  Google Scholar 

  11. Li MJ, Zhang J, Liang Q, Xuan C, Wu J, Jiang P, Li W, Zhu Y, Wang P (2017) Exploring genetic associations with ceRNA regulation in the human genome. Nucleic Acids Res 45:5653–5665

    Article  CAS  Google Scholar 

  12. Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, Zeng C (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130(17):1452–1465

    Article  CAS  Google Scholar 

  13. An JH, Chen ZY, Ma QL, Wang HJ, Zhang JQ, Shi FW (2019) LncRNA SNHG16 promoted proliferation and inflammatory response of macrophages through miR-17-5p/NF-κB signaling pathway in patients with atherosclerosis. Eur Rev Med Pharmacol Sci 23(19):8665–8677

    PubMed  Google Scholar 

  14. Feng F, Aiping C, Junjian H, Qinghua X, Yougen C, Xunbo J (2018) Long noncoding RNA SNHG16 contributes to the development of bladder cancer via regulating miR-98/STAT3/Wnt/β-catenin pathway axis. J Cell Biochem 119(11):9408–9418

    Article  CAS  Google Scholar 

  15. Su P, Mu S, Wang Z (2019) Long noncoding RNA SNHG16 promotes osteosarcoma cells migration and invasion via sponging miRNA-340. DNA Cell Biol 38(2):170–175

    Article  CAS  Google Scholar 

  16. Phelps M, Coss C, Wang H, Cook M (2016) Registered report: coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Elife 5:e12470

    Article  Google Scholar 

  17. Zhong JH, Xiang X, Wang YY, Liu X, Li LQ (2020) The lncRNA SNHG16 affects prognosis in hepatocellular carcinoma by regulating p62 expression. J Cell Physiol 235(2):1090–1102

    Article  CAS  Google Scholar 

  18. Gidlöf O, Smith JG, Miyazu K, Gilje P, Spencer A, Blomquist S (2013) Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord 13:12

    Article  Google Scholar 

  19. Staszel T, Zapała B, Polus A, Sadakierskachudy A, KiećWilk B, Stępień E (2011) Role of microRNAs in endothelial cell pathophysiology. Pol Arch Med Wewn 121(10):361–366

    CAS  PubMed  Google Scholar 

  20. Gao J, Yang S, Wang K, Zhong Q, Ma A, Pan X (2019) Plasma miR-126 and miR-143 as potential novel biomarkers for cerebral atherosclerosis. J Stroke Cerebrovasc Dis 28(1):38–43

    Article  Google Scholar 

  21. Wu H, Liu T, Hou H (2020) Knockdown of LINC00657 inhibits ox-LDL-induced endothelial cell injury by regulating miR-30c-5p/Wnt7b/β-catenin. Mol Cell Biochem 472(1–2):145–155

    Article  CAS  Google Scholar 

  22. Zhang Q, Chen T, Zhang Y, Lyu L, Zhang B, Huang C (2021) MiR-30c-5p regulates adventitial progenitor cells differentiation to vascular smooth muscle cells through targeting OPG. Stem Cell Res Ther 12(1):67

    Article  CAS  Google Scholar 

  23. Mytilinaiou M, Nikitovic D, Berdiaki A, Kostouras A, Papoutsidakis A, Tsatsakis AM, Tzanakakis GN, Mytilinaiou M, Nikitovic D, Berdiaki A, Kostouras A, Papoutsidakis A, Tsatsakis AM et al (2017) Emerging roles of syndecan 2 in epithelial and mesenchymal cancer progression. IUBMB Life 69(11):824–833

    Article  CAS  Google Scholar 

  24. Vicente CM, Ricci R, Nader HB, Toma L (2013) Syndecan-2 is upregulated in colorectal cancer cells through interactions with extracellular matrix produced by stromal fibroblasts. BMC Cell Biol 14:25

    Article  Google Scholar 

  25. Chen E, Hermanson S, Ekker SC (2004) Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103(5):1710–1719

    Article  CAS  Google Scholar 

  26. Chen L, Klass C, Woods A (2004) Syndecan-2 regulates transforming growth factor-beta signaling. J Biol Chem 279(16):15715–15718

    Article  CAS  Google Scholar 

  27. Kwon MJ, Hong E, Choi Y, Kang DH, Oh ES (2014) Interleukin-1α promotes extracellular shedding of syndecan-2 via induction of matrix metalloproteinase-7 expression. Biochem Biophys Res Commun 446(2):487–492

    Article  CAS  Google Scholar 

  28. Zhang R, Song B, Hong X, Shen Z, Sui L, Wang S (2020) MicroRNA-9 inhibits vulnerable plaque formation and vascular remodeling via suppression of the SDC2-dependent FAK/ERK signaling pathway in mice with atherosclerosis. Front Physiol 11:804

    Article  Google Scholar 

  29. Hua R, Yu J, Yan X, Ni Q, Zhi X, Li X (2020) Syndecan-2 in colorectal cancer plays oncogenic role via epithelial-mesenchymal transition and MAPK pathway. Biomed Pharmacother 121:109630

    Article  CAS  Google Scholar 

  30. Zhang CJ, Liu C, Wang YX, Zhu N, Hu ZY, Liao DF (2019) Long non-coding RNA-SRA promotes neointimal hyperplasia and vascular smooth muscle cells proliferation via MEK-ERK-CREB pathway. Vascul Pharmacol 116:16–23

    Article  CAS  Google Scholar 

  31. Lin J, Zhou S, Zhao T, Ju T, Zhang L (2016) TRPM7 channel regulates ox-LDL-induced proliferation and migration of vascular smooth muscle cells via MEK-ERK pathways. FEBS Lett 590(4):520–532

    Article  CAS  Google Scholar 

  32. Yang N, Dong B, Song Y, Li Y, Kou L, Yang J (2020) Downregulation of miR-637 promotes vascular smooth muscle cell proliferation and migration via regulation of insulin-like growth factor-2. Cell Mol Biol Lett 25:30

    Article  CAS  Google Scholar 

  33. Zhou XY, Liu H, Ding ZB, Xi HP, Wang GW (2020) lncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway. Genomics 112(1):1021–1029

    Article  CAS  Google Scholar 

  34. Chen H, Li M, Huang P (2019) LncRNA SNHG16 promotes hepatocellular carcinoma proliferation, migration and invasion by regulating miR-186 expression. J Cancer 10(15):3571–3581

    Article  CAS  Google Scholar 

  35. An JH, Chen ZY, Ma QL, Wang HJ, Shi FW (2019) LncRNA SNHG16 promoted proliferation and inflammatory response of macrophages through MIR-17-5p/NF-κB signaling pathway in patients with atherosclerosis. Eur Rev Med Pharmacol Sci 23(19):8665–8677

    PubMed  Google Scholar 

  36. Ceolotto G, Giannella A, Albiero M, Kuppusamy M, Radu C, Simioni P (2017) miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovasc Res 113(13):1627–1638

    Article  CAS  Google Scholar 

  37. Li P, Zhong X, Li J, Liu H, Ma X, He R (2018) MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated endothelial cell pyroptosis through FOXO3 down-regulation in atherosclerosis. Biochem Biophys Res Commun 503(4):2833–2840

    Article  CAS  Google Scholar 

  38. Geeraert B, De Keyzer D, Davey PC, Crombé F, Benhabilès N, Holvoet P (2007) Oxidized low-density lipoprotein-induced expression of ABCA1 in blood monocytes precedes coronary atherosclerosis and is associated with plaque complexity in hypercholesterolemic pigs. J Thromb Haemost 5(12):2529–2536

    Article  CAS  Google Scholar 

  39. Pan JX (2017) LncRNA H19 promotes atherosclerosis by regulating MAPK and NF-kB signaling pathway. Eur Rev Med Pharmacol Sci 21(2):322–328

    PubMed  Google Scholar 

  40. Ceolotto G, Giannella A, Albiero M, Kuppusamy M, Radu C, Simioni P (2018) Corrigendum to: miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovasc Res 114(14):1908

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Dong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

The ethics committee of the Third Hospital of Changsha approved this study. All the patients had been informed before the research, and written informed consents were obtained from them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SN., Zhong, LY., Sun, YH. et al. Downregulation of lncRNA SNHG16 inhibits vascular smooth muscle cell proliferation and migration in cerebral atherosclerosis by targeting the miR-30c-5p/SDC2 axis. Heart Vessels 37, 1085–1096 (2022). https://doi.org/10.1007/s00380-022-02049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-022-02049-4

Keywords

Navigation