Skip to main content

Amount of dissipative energy loss when assessing left ventricular dysfunction in female patients with systemic lupus erythematosus

Abstract

Systemic lupus erythematosus (SLE) is associated with an increased risk of cardiovascular disease. The purpose of the current study was to explore the amount of energy loss (EL) using vector flow mapping (VFM) in the detection of early stage left ventricular (LV) dysfunction among patients with SLE. Eighty-nine patients with SLE and fifty-six healthy controls were enrolled. SLE patients were further divided into inactive (SLEDAI ≤ 4, n = 43) and active (SLEDAI ≥ 5, n = 46) subgroups. A prosound F75 echocardiography machine was used for echocardiographic examination. Intra-cardiac flow images were analysed by a VFM workstation. Compared with the healthy group, the inactive SLE group had increased diastolic EL values (38.05 mW/m vs. 33.02 mW/m, p = 0.010). However, the systolic EL values were comparable between the inactive SLE group and the control group (26.07mW/m vs 23.15 mW/m, p = 0.105). The active SLE group exhibited significantly higher diastolic (104.13 mW/m vs 33.02 mW/m, p < 0.001) and systolic (48.83 mW/m vs 23.15 mW/m, p < 0.001) EL values than the control group. The most notable correlation was observed between the values of the diastolic EL and SLEDAI in the inactive SLE group (r = 0.633, p < 0.001) and in the active SLE group (r = 0.824, p < 0.001). LV-dissipative EL assessed by using VFM is useful and feasible for estimating lesions of LV systolic and diastolic function in active SLE patients with preserved left ventricular ejection fraction. Increased disease activity may lead to increased risk of LV dysfunction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and material

Datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Aringer M, Schneider M (2016) Systemic lupus erythematosus. Dtsch Med Wochenschr 141(8):537–543

    Article  Google Scholar 

  2. Fernandez R-F, de Larrinoa I (2015) What is new in systemic lupus erythematosus. Reumatol Clin 11(1):27–32

    Article  Google Scholar 

  3. Bartels CM, Buhr KA, Goldberg JW, Bell CL, Visekruna M, Nekkanti S, Greenlee RT (2014) Mortality and cardiovascular burden of systemic lupus erythematosus in a US population-based cohort. J Rheumatol 41(4):680–687

    Article  Google Scholar 

  4. Manzi S, Meilahn EN, Rairie JE, Conte CG, Medsger TA Jr, Jansen-McWilliams L, D’Agostino RB, Kuller LH (1997) Age-specific incidence rates of myocardial infarction and angina in women with systemic lupus erythematosus: comparison with the Framingham Study. Am J Epidemiol 145(5):408–415

    CAS  Article  Google Scholar 

  5. Teixeira RA, Borba EF, Bonfa E, Martinelli Filho M (2010) Arrhythmias in systemic lupus erythematosus. Rev Bras Reumatol 50(1):81–89

    Article  Google Scholar 

  6. Lee JL, Naguwa SM, Cheema GS, Gershwin ME (2009) Revisiting Libman–Sacks endocarditis: a historical review and update. Clin Rev Allergy Immunol 36(2–3):126–130

    Article  Google Scholar 

  7. Schoenfeld SR, Kasturi S, Costenbader KH (2013) The epidemiology of atherosclerotic cardiovascular disease among patients with SLE: a systematic review. Semin Arthritis Rheum 43(1):77–95

    Article  Google Scholar 

  8. Bengtsson C, Ohman ML, Nived O, Rantapaa Dahlqvist S (2012) Cardiovascular event in systemic lupus erythematosus in northern Sweden: incidence and predictors in a 7-year follow-up study. Lupus 21(4):452–459

    CAS  Article  Google Scholar 

  9. Giannelou M, Mavragani CP (2017) Cardiovascular disease in systemic lupus erythematosus: a comprehensive update. J Autoimmun 82:1–12

    Article  Google Scholar 

  10. Tanaka M, Sakamoto T, Sugawara S, Nakajima H, Katahira Y, Ohtsuki S, Kana H (2008) Blood flow structure and dynamics, and ejection mechanism in the left ventricle: analysis using echo-dynamography. J Cardiol 52(2):86–101

    Article  Google Scholar 

  11. Dhutia NM, Zolgharni M, Mielewczik M, Negoita M, Sacchi S, Manoharan K, Francis DP, Cole GD (2017) Open-source, vendor-independent, automated multi-beat tissue Doppler echocardiography analysis. Int J Cardiovasc Imaging 33(8):1135–1148

    Article  Google Scholar 

  12. Tang Y, Zhu S, Chen J, Hua L (2018) R-wave modified tissue Doppler imaging myocardial performance index for the assessment of cardiac function in children with congestive heart failure: a feasibility study. Med Sci Monit 24:5225–5231

    Article  Google Scholar 

  13. Di Bonito P, Moio N, Cavuto L, Covino G, Murena E, Scilla C, Turco S, Capaldo B, Sibilio G (2005) Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging. Diabet Med 22(12):1720–1725

    Article  Google Scholar 

  14. Collier P, Phelan D, Klein A (2017) A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 69(8):1043–1056

    Article  Google Scholar 

  15. Al-Biltagi M, Tolba OA, Rowisha MA, Mahfouz Ael S, Elewa MA (2015) Speckle tracking and myocardial tissue imaging in infant of diabetic mother with gestational and pregestational diabetes. Pediatr Cardiol 36(2):445–453

    Article  Google Scholar 

  16. Shanks M, Thompson RB, Paterson ID, Putko B, Khan A, Chan A, Becher H, Oudit GY (2013) Systolic and diastolic function assessment in Fabry disease patients using speckle-tracking imaging and comparison with conventional echocardiographic measurements. J Am Soc Echocardiogr 26(12):1407–1414

    Article  Google Scholar 

  17. Ng AC, da Tran T, Newman M, Allman C, Vidaic J, Kadappu KK, Boyd A, Thomas L, Leung DY (2008) Comparison of myocardial tissue velocities measured by two-dimensional speckle tracking and tissue Doppler imaging. Am J Cardiol 102(6):784–789

    Article  Google Scholar 

  18. Chen M, Jin JM, Zhang Y, Gao Y, Liu SL (2013) Assessment of left ventricular diastolic dysfunction based on the intraventricular velocity difference by vector flow mapping. J Ultrasound Med 32(12):2063–2071

    Article  Google Scholar 

  19. Hayashi T, Itatani K, Inuzuka R, Shimizu N, Shindo T, Hirata Y, Miyaji K (2015) Dissipative energy loss within the left ventricle detected by vector flow mapping in children: normal values and effects of age and heart rate. J Cardiol 66(5):403–410

    Article  Google Scholar 

  20. Xu L, Sun C, Zhu X, Liu W, Ta S, Zhao D, Wang F, Liu L (2017) Characterization of left ventricle energy loss in healthy adults using vector flow mapping: preliminary results. Echocardiography 34(5):700–708

    Article  Google Scholar 

  21. Cao Y, Sun XY, Zhong M, Li L, Zhang M, Lin MJ, Zhang YK, Jiang GH, Zhang W, Shang YY (2019) Evaluation of hemodynamics in patients with hypertrophic cardiomyopathy by vector flow mapping: comparison with healthy subjects. Exp Ther Med 17(6):4379–4388

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ji L, Hu W, Yong Y, Wu H, Zhou L, Xu D (2018) Left ventricular energy loss and wall shear stress assessed by vector flow mapping in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 34(9):1383–1391

    Article  Google Scholar 

  23. Liu R, Cui C, Li Y, Qiu Z, Hu Y, Wang Y, Cui M, Yin S, Liu L (2019) Analysis of left ventricular diastolic energy loss in patients with aortic stenosis with preserved ejection fraction by using vector flow mapping. Echocardiography 36(12):2216–2226

    Article  Google Scholar 

  24. Honda T, Itatani K, Takanashi M, Kitagawa A, Ando H, Kimura S, Oka N, Miyaji K, Ishii M (2017) Exploring energy loss by vector flow mapping in children with ventricular septal defect: pathophysiologic significance. Int J Cardiol 244:143–150

    Article  Google Scholar 

  25. Wang W, Wang Y, Chen X, Yuan L, Bai H (2019) Evaluation of left ventricular diastolic function based on flow energetic parameters in chronic kidney disease with diastolic dysfunction. Echocardiography 36(3):567–576

    Article  Google Scholar 

  26. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725

    CAS  Article  Google Scholar 

  27. Itatani K, Okada T, Uejima T, Tanaka T, Ono M, Miyaji K, Takenaka K (2013) Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress. Jpn J Appl Phys 52(7S):07HF16

    Article  Google Scholar 

  28. Asami R, Tanaka T, Shimizu M, Seki Y, Nishiyama T, Sakashita H, Okada T (2019) Ultrasonic vascular vector flow mapping for 2-D flow estimation. Ultrasound Med Biol 45(7):1663–1674

    Article  Google Scholar 

  29. Westerweel PE, Luyten RK, Koomans HA, Derksen RH, Verhaar MC (2007) Premature atherosclerotic cardiovascular disease in systemic lupus erythematosus. Arthritis Rheum 56(5):1384–1396

    Article  Google Scholar 

  30. Bulkley BH, Roberts WC (1975) The heart in systemic lupus erythematosus and the changes induced in it by corticosteroid therapy: a study of 36 necropsy patients. Am J Med 58(2):243–264

    CAS  Article  Google Scholar 

  31. Roman MJ, Shanker BA, Davis A, Lockshin MD, Sammaritano L, Simantov R, Crow MK, Schwartz JE, Paget SA, Devereux RB, Salmon JE (2003) Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N Engl J Med 349(25):2399–2406

    CAS  Article  Google Scholar 

  32. Gartshteyn Y, Tamargo M, Fleischer S, Kapoor T, Li J, Askanase A, Winchester R, Geraldino-Pardilla L (2020) Endomyocardial biopsies in the diagnosis of myocardial involvement in systemic lupus erythematosus. Lupus 29(2):199–204

    CAS  Article  Google Scholar 

  33. Gladman DD, Ibanez D, Urowitz MB (2002) Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29(2):288–291

    PubMed  Google Scholar 

  34. Yip GW, Shang Q, Tam LS, Zhang Q, Li EK, Fung JW, Yu CM (2009) Disease chronicity and activity predict subclinical left ventricular systolic dysfunction in patients with systemic lupus erythematosus. Heart 95(12):980–987

    Article  Google Scholar 

  35. Ocampo-Piraquive V, Nieto-Aristizabal I, Canas CA, Tobon GJ (2018) Mortality in systemic lupus erythematosus: causes, predictors and interventions. Expert Rev Clin Immunol 14(12):1043–1053

    CAS  Article  Google Scholar 

  36. Keeling SO, Vandermeer B, Medina J, Chatterley T, Nevskaya T, Pope J, Alaburubalnabi Z, Bissonauth A, Touma Z (2018) Measuring disease activity and damage with validated metrics: a systematic review on mortality and damage in systemic lupus erythematosus. J Rheumatol 45(10):1448–1461

    Article  Google Scholar 

  37. Tincani A, Rebaioli CB, Taglietti M, Shoenfeld Y (2006) Heart involvement in systemic lupus erythematosus, anti-phospholipid syndrome and neonatal lupus. Rheumatology (Oxford) 45(Suppl 4):iv8-13

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was funded by the Key Research & Development Projects of Sichuan Province (Grant No. 2020YFS0245).

Author information

Authors and Affiliations

Authors

Contributions

CL wrote the main manuscript text and prepared Tables 2 and 4. KL prepared Fig. 1 and Tables 1 and 3. FW prepared Fig. 4. Li Rao prepared Fig. 2 and 3. All authors reviewed the manuscript.

Corresponding author

Correspondence to Li Rao.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethics approval and consent to participate

The study protocol was approved by the Ethics Committee of Sichuan University (Sichuan, China). Written informed consent was obtained from all participants.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, K., Wang, F. et al. Amount of dissipative energy loss when assessing left ventricular dysfunction in female patients with systemic lupus erythematosus. Heart Vessels 37, 1175–1183 (2022). https://doi.org/10.1007/s00380-021-02017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-021-02017-4

Keywords

  • Systemic lupus erythematosus
  • Two-dimensional echocardiography
  • Vector flow mapping
  • Dissipative energy loss
  • Left ventricular function