Skip to main content

Dual-energy CT plaque characteristics of post mortem thin-cap fibroatheroma in comparison to infarct-related culprit lesions

Abstract

Improvement of non-invasive identification of high-risk plaque may increase the preventive options of acute coronary syndrome. To describe the characteristics of thin-cap fibroatheroma (TCFA) in a post mortem model in comparison to characteristics of culprit lesions in patients with non-ST-elevation-myocardial-infarction (NSTEMI) using the dual energy computed tomography (DECT). Three post mortem hearts were prepared with iodine-contrast, inserted in a Kyoto phantom and scanned by DECT. Six TCFA were identified using histopathological analysis (cap thickness < 65 μm and necrotic core > 10% of the plaque area). In the NSTEMI group, 29 patients were scheduled to DECT prior to coronary angiography and invasive treatment. Culprit lesions were identified blinded for the patient history by two independent invasive cardiologists using the coronary angiography. The DECT analysis of TCFA and culprit lesions was performed retrospectively with determination of effective atomic number (Effective-Z), Hounsfield Unit (HU), plaque type (non-calcified, predominantly non-calcified, predominantly calcified or calcified), spotty calcification,, plaque length, plaque volume and plaque burden and the remodeling index. The Effective-Z, HU and plaqueburden were significantly different between TCFA and culprit lesions (P < 0.05).The TCFA plaques were more calcified in comparison to culprit lesions (P < 0.05). No significant difference in the other plaque characteristics was observed. The use of DECT demonstrated different Effective-Z values and different characteristics of post mortem TCFA in comparison to in vivo culprit lesions. This finding may highlight, that not all TCFA should be considered as vulnerable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

ACS:

Acute coronary syndrome

CAG:

Coronary angiography

CABG:

Coronary artery bypass graft

CCTA:

Cardiac computed tomography angiography

DECT:

Dual energy computed tomography

NSTEMI:

Non-ST-elevation myocardial infarction

ROI:

Region of interest

TCFA:

Thin-cap fibro atheroma

References

  1. de Feijter PJ, Nieman K (2011) Failure of CT coronary imaging to identify plaque erosion: a resetting of expectations. Eur Heart J 32(22):2736–2738

    PubMed  Google Scholar 

  2. Leschka S, Seitun S, Dettmer M, Baumuller S, Stolzmann P, Goetti R, Scheffel H, Feuchtner G, Wunnicke K, Wildermuth S, Oehlschlegel C, Marincek B, Jochum W, Alkadhi H (2010) Ex vivo evaluation of coronary atherosclerotic plaques: characterization with dual-source CT in comparison with histopathology. J Cardiovasc Comput Tomogr 4(5):301–308

    PubMed  Google Scholar 

  3. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, Colombo A, Stefanadis C, Ward Casscells S, Moreno PR, Maseri A, van der Steen AF(2004) Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 003, Santorini, Greece. Eur Heart J 25(12): 1077–1082.

  4. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114(12):1852–1866

    CAS  PubMed  Google Scholar 

  5. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20(5):1262–1275

    CAS  PubMed  Google Scholar 

  6. Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111(25):3481–3488

    PubMed  Google Scholar 

  7. Kolodgie FDF (2001) The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 16(5):285–292

    CAS  PubMed  Google Scholar 

  8. oSakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R, (2013) Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ 22(6):399–411

    Google Scholar 

  9. Goncalves I, den Ruijter H, Nahrendorf M, Pasterkamp G (2015) Detecting the vulnerable plaque in patients. J Intern Med 278(5):520–530

    CAS  PubMed  Google Scholar 

  10. Ozaki Y, Tanaka A, Tanimoto T, Kitabata H, Kashiwagi M, Kubo T, Takarada S, Ishibashi K, Komukai K, Ino Y, Hirata K, Mizukoshi M, Imanishi T, Akasaka T (2011) Thin-cap fibroatheroma as high-risk plaque for microvascular obstruction in patients with acute coronary syndrome. Circ Cardiovasc Imaging 4(6):620–627

    PubMed  Google Scholar 

  11. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng V, Chinnaiyan K, Chow BJ, Delago A, Hadamitzky M, Hausleiter J, Kaufmann P, Maffei E, Raff G, Shaw LJ, Villines T, Berman DS (2011) Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol 58(8):849–860

    PubMed  Google Scholar 

  12. Ostrom MP, Gopal A, Ahmadi N, Nasir K, Yang E, Kakadiaris I, Flores F, Mao SS, Budoff MJ (2008) Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. J Am Coll Cardiol 52(16):1335–1343

    PubMed  Google Scholar 

  13. Andreini D, Pontone G, Mushtaq S, Bartorelli AL, Bertella E, Antonioli L, Formenti A, Cortinovis S, Veglia F, Annoni A, Agostoni P, Montorsi P, Ballerini G, Fiorentini C, Pepi M (2012) A long-term prognostic value of coronary CT angiography in suspected coronary artery disease. JACC Cardiovasc Imaging 5(7):690–701

    PubMed  Google Scholar 

  14. Hadamitzky M, Achenbach S, Al-Mallah M, Berman D, Budoff M, Cademartiri F, Callister T, Chang HJ, Cheng V, Chinnaiyan K, Chow BJ, Cury R, Delago A, Dunning A, Feuchtner G, Gomez M, Kaufmann P, Kim YJ, Leipsic J, Lin FY, Maffei E, Min JK, Raff G, Shaw LJ, Villines TC, Hausleiter J (2013) Optimized prognostic score for coronary computed tomographic angiography: results from the CONFIRM registry (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter Registry). J Am Coll Cardiol 62(5):468–476

    PubMed  Google Scholar 

  15. Motoyama S, Kondo T, Anno H, Sugiura A, Ito Y, Mori K, Ishii J, Sato T, Inoue K, Sarai M, Hishida H,Narula J(2007) Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging. Circ J 71(3): 363–366.

  16. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, Nakamura Y, Yamashita H, Yamagishi H, Takeuchi K, Naruko T, Haze K, Becker AE, Yoshikawa J, Ueda M (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110(22):3424–3429

    PubMed  Google Scholar 

  17. Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H (2010) The napkin-ring sign: CT signature of high-risk coronary plaques? JACC Cardiovasc Imaging 3(4):440–444

    PubMed  Google Scholar 

  18. Otsuka K, Fukuda S, Tanaka A, Nakanishi K, Taguchi H, Yoshikawa J, Shimada K, Yoshiyama M (2013) Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging 6(4):448–457

    PubMed  Google Scholar 

  19. Bilolikar AN, Goldstein JA, Madder RD,Chinnaiyan KM(2016) Plaque disruption by coronary computed tomographic angiography in stable patients vs. acute coronary syndrome: a feasibility study. Eur Heart J Cardiovasc Imaging 17(3): 247–259.

  20. Kashiwagi M, Tanaka A, Kitabata H, Tsujioka H, Kataiwa H, Komukai K, Tanimoto T, Takemoto K, Takarada S, Kubo T, Hirata K, Nakamura N, Mizukoshi M, Imanishi T, Akasaka T (2009) Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 2(12):1412–1419

    PubMed  Google Scholar 

  21. van Velzen JE, de Graaf FR, de Graaf MA, Schuijf JD, Kroft LJ, de Roos A, Reiber JH, Bax JJ, Jukema JW, Boersma E, Schalij MJ, van der Wall EE (2011) Comprehensive assessment of spotty calcifications on computed tomography angiography: comparison to plaque characteristics on intravascular ultrasound with radiofrequency backscatter analysis. J Nucl Cardiol 18(5):893–903

    PubMed  PubMed Central  Google Scholar 

  22. Benedek T, Gyongyosi M, Benedek I (2013) Multislice computed tomographic coronary angiography for quantitative assessment of culprit lesions in acute coronary syndromes. Can J Cardiol 29(3):364–371

    PubMed  Google Scholar 

  23. Obaid DR, Calvert PA, Gopalan D, Parker RA, West NE, Goddard M, Rudd JH, Bennett MR (2014) Dual-energy computed tomography imaging to determine atherosclerotic plaque composition: a prospective study with tissue validation. J Cardiovasc Comput Tomogr 8(3):230–237

    PubMed  PubMed Central  Google Scholar 

  24. Nakajima S, Ito H, Mitsuhashi T, Kubo Y, Matsui K, Tanaka I, Fukui R, Omori H, Nakaoka T, Sakura H, Ueno E, Machida H (2017) Clinical application of effective atomic number for classifying non-calcified coronary plaques by dual-energy computed tomography. Atherosclerosis 261:138–143

    CAS  PubMed  Google Scholar 

  25. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, Wong ND, Virmani R, Kondo T, Ozaki Y, Narula J (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54(1):49–57

    PubMed  Google Scholar 

  26. Matsui K, Machida H, Mitsuhashi T, Omori H, Nakaoka T, Sakura H, Ueno E (2015) Analysis of coronary arterial calcification components with coronary CT angiography using single-source dual-energy CT with fast tube voltage switching. Int J Cardiovasc Imaging 31(3):639–647

    PubMed  Google Scholar 

  27. Coursey CA, Nelson RC, Boll DT, Paulson EK, Ho LM, Neville AM, Marin D, Gupta RT, Schindera ST (2010) Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics 30(4):1037–1055

    PubMed  Google Scholar 

  28. Hu J, Zhao X (2016) A practical material decomposition method for x-ray dual spectral computed tomography. J Xray Sci Technol 24(3):407–425

    PubMed  Google Scholar 

  29. Yang X, Gai L, Dong W, Liu H, Sun Z, Tian F, Chen Y (2013) Characterization of culprit lesions in acute coronary syndromes compared with stable angina pectoris by dual-source computed tomography. Int J Cardiovasc Imaging 29(4):945–953

    PubMed  Google Scholar 

  30. Goo HW, Goo JM (2017) Dual-Energy CT: New Horizon in Medical Imaging. Korean J Radiol 18(4):555–569

    PubMed  PubMed Central  Google Scholar 

  31. Zachrisson H, Engstrom E, Engvall J, Wigstrom L, Smedby O, Persson A (2010) Soft tissue discrimination ex vivo by dual energy computed tomography. Eur J Radiol 75(2):e124-128

    CAS  PubMed  Google Scholar 

  32. Precht H, Leth PM, Thygesen J, Hardt-Madsen M, Nielsen B, Falk E, Egstrup K, Gerke O, Broersen A, Kitslaar PH, Dijkstra J, Lambrechtsen J (2014) Optimisation of post mortem cardiac computed tomography compared to optical coherence tomography and histopathology – Technical note. Journal of Forensic Radiology and Imaging 2(2):85–90

    Google Scholar 

  33. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML,Roe BB(1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4 Suppl): 5–40.

  34. Auscher S, Heinsen L, Nieman K, Vinther KH, Logstrup B, Moller JE, Broersen A, Kitslaar P, Lambrechtsen J, Egstrup K (2015) Effects of intensive lipid-lowering therapy on coronary plaques composition in patients with acute myocardial infarction: Assessment with serial coronary CT angiography. Atherosclerosis 241(2):579–587

    CAS  PubMed  Google Scholar 

  35. Weigold WG, Abbara S, Achenbach S, Arbab-Zadeh A, Berman D, Carr JJ, Cury RC, Halliburton SS, McCollough CH, Taylor AJ (2011) Standardized medical terminology for cardiac computed tomography: a report of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr 5(3):136–144

    PubMed  Google Scholar 

  36. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50(4):319–326

    PubMed  Google Scholar 

  37. Cilla M, Pena E, Martinez MA, Kelly DJ (2013) Comparison of the vulnerability risk for positive versus negative atheroma plaque morphology. J Biomech 46(7):1248–1254

    CAS  PubMed  Google Scholar 

  38. Schoenhagen P, Ziada KM, Vince DG, Nissen SE, Tuzcu EM (2001) Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis. J Am Coll Cardiol 38(2):297–306

    CAS  PubMed  Google Scholar 

  39. Stary HC (2000) Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 20(5):1177–1178

    CAS  PubMed  Google Scholar 

  40. Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, Gencer B, Hasenfuss G, Kjeldsen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windecker S, Baumgartner H, Gaemperli O, Achenbach S, Agewall S, Badimon L, Baigent C, Bueno H, Bugiardini R, Carerj S, Casselman F, Cuisset T, Erol Ç, Fitzsimons D, Halle M, Hamm C, Hildick-Smith D, Huber K, Iliodromitis E, James S, Lewis BS, Lip GYH, Piepoli MF, Richter D, Rosemann T, Sechtem U, Steg PG, Vrints C, Luis Zamorano J (2016) 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevationTask Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 37(3):267–315

    CAS  PubMed  Google Scholar 

  41. Sheta HM, Möller S, Heinsen LJ, Nieman K, Thomsen T, Egstrup K, Lambrechtsen J (2021) Characteristics of culprit lesion in patients with non-ST-elevation myocardial infarction and improvement of diagnostic utility using dual energy cardiac CT. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-020-02141-8

    Article  PubMed  Google Scholar 

  42. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head SJ, Juni P, Kappetein AP, Kastrati A, Knuuti J, Landmesser U, Laufer G, Neumann FJ, Richter DJ, Schauerte P, Sousa Uva M, Stefanini GG, Taggart DP, Torracca L, Valgimigli M, Wijns W, Witkowski A (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35(37):2541–2619

    PubMed  Google Scholar 

  43. Halliburton SS, Schoenhagen P, Nair A, Stillman A, Lieber M, Murat Tuzcu E, Geoffrey Vince D, White RD (2006) Contrast enhancement of coronary atherosclerotic plaque: a high-resolution, multidetector-row computed tomography study of pressure-perfused, human ex-vivo coronary arteries. Coron Artery Dis 17(6):553–560

    PubMed  Google Scholar 

  44. Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, Rahman AM, Cury RC, Abbara S, Joneidi-Jafari H, Achenbach S, Brady TJ (2006) Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 47(8):1655–1662

    PubMed  Google Scholar 

  45. Hammer-Hansen S, Kofoed KF, Kelbaek H, Kristensen T, Kuhl JT, Thune JJ, Kober L (2009) Volumetric evaluation of coronary plaque in patients presenting with acute myocardial infarction or stable angina pectoris-a multislice computerized tomography study. Am Heart J 157(3):481–487

    PubMed  Google Scholar 

  46. Yang DH, Kang SJ, Koo HJ, Chang M, Kang JW, Lim TH, Baek S, Han S, Lee PH, Roh JH, Ahn JM, Park DW, Lee SW, Lee CW, Park SW, Park SJ, Mintz GS, Kim YH (2017) Coronary CT angiography characteristics of OCT-defined thin-cap fibroatheroma: a section-to-section comparison study. Eur Radiol. https://doi.org/10.1007/s00330-017-4992-8

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ozaki Y, Okumura M, Ismail TF, Motoyama S, Naruse H, Hattori K, Kawai H, Sarai M, Takagi Y, Ishii J, Anno H, Virmani R, Serruys PW, Narula J (2011) Coronary CT angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. Eur Heart J 32(22):2814–2823

    PubMed  Google Scholar 

  48. Goldstein JA, Dixon S, Safian RD, Hanzel G, Grines CL, Raff GL (2008) Computed tomographic angiographic morphology of invasively proven complex coronary plaques. JACC Cardiovasc Imaging 1(2):249–251

    PubMed  Google Scholar 

  49. Stone PH, Maehara A, Coskun AU, Maynard CC, Zaromytidou M, Siasos G, Andreou I, Fotiadis D, Stefanou K, Papafaklis M, Michalis L, Lansky AJ, Mintz GS, Serruys PW, Feldman CL, Stone GW (2017) Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events: The PROSPECT Study. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2017.01.031

    Article  PubMed  Google Scholar 

  50. Ahmadi A, Leipsic J, Blankstein R, Taylor C, Hecht H, Stone GW, Narula J (2015) Do plaques rapidly progress prior to myocardial infarction? The interplay between plaque vulnerability and progression. Circ Res 117(1):99–104

    CAS  PubMed  Google Scholar 

  51. Schuijf JD, Beck T, Burgstahler C, Jukema JW, Dirksen MS, de Roos A, van der Wall EE, Schroeder S, Wijns W, Bax JJ (2007) Differences in plaque composition and distribution in stable coronary artery disease versus acute coronary syndromes; non-invasive evaluation with multi-slice computed tomography. Acute Card Care 9(1):48–53

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all radiographers and staff in the cardiac wards at OUH hospital of Svendborg for their dedication and contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussam Mahmoud Sheta.

Ethics declarations

Conflict of interest

Dr. Sheta received unrestricted research grants from GE Healthcare, Waukesha, USA), the University of Southern Denmark (Denmark) and Department of Medical Research, OUH Svendborg Hospital (Denmark). Dr. Nieman received unrestricted institutional support, unrelated to current paper, from Siemens Healthineers, Bayer healthcare and Heartflow Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheta, H.M., Precht, H., Busk, C.A.G.R. et al. Dual-energy CT plaque characteristics of post mortem thin-cap fibroatheroma in comparison to infarct-related culprit lesions. Heart Vessels 37, 400–410 (2022). https://doi.org/10.1007/s00380-021-01942-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-021-01942-8

Keywords

  • Cardiac computed tomography angiography
  • Vulnerable plaques
  • Thin-cap fibro atheroma
  • Culprit lesions