Skip to main content

Advertisement

Log in

Validation of the correlation between angiosome-based target arterial path, mid-term limb-based patency, and the global limb anatomical staging system

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

This study aimed to validate the correlation between the Global Limb Anatomical Staging System (GLASS) and limb-based patency (LBP) and angiosome-based target arterial path (TAP) and to detect the predictors of LBP loss. After the publication of the Global Vascular Guidelines in 2019, the evaluation of GLASS and identification of TAP have been recommended. However, there are few reports regarding GLASS. Eighty-three patients with chronic limb-threatening ischemia (CLTI) and tissue loss from 2016 to 2020 were evaluated. The correlation between GLASS and LBP and successful revascularization of angiosome-based TAP was analyzed. We also investigated the predictors of LBP loss. The number of patients in each GLASS stage was as follows: GLASS I, 6 patients; GLASS II, 15 patients; GLASS III, 62 patients. At 6 months, the Kaplan–Meier estimate of LBP was 66.7% in GLASS I, 41.6% in GLASS II, and 16.4% in GLASS III, respectively (p = 0.034). The rate of successful revascularization of angiosome-based TAP was 100% in GLASS I, 86.7% in GLASS II, and 46.8% in GLASS III, respectively (p = 0.002). Multivariate analysis showed that the Wound, Ischemia, and foot Infection (WIfI) stage [hazard ratio (HR) 1.58; 95% confidence interval (CI) 1.07–2.33; p = 0.021] and GLASS infrapopliteal (IP) grade (HR 1.96; 95% CI 1.31–2.95; p = 0.001) were the independent predictors of LBP loss. The GLASS stage was significantly correlated with successful revascularization of angiosome-based TAP and mid-term LBP. The WIfI stage and GLASS IP grade were the independent predictors of loss of LBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, TASC II Working Group (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg 33:S1–S75

    Article  Google Scholar 

  2. Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK (2013) Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA guideline recommendations): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127:1425–1443

    Article  Google Scholar 

  3. Iida O, Nakamura M, Yamauchi Y, Fukunaga M, Yokoi Y, Yokoi H, Soga Y, Zen K, Suematsu N, Inoue N, Suzuki K, Hirano K, Shintani Y, Miyashita Y, Urasawa K, Kitano I, Tsuchiya T, Kawamoto K, Yamaoka T, Uesugi M, Shinke T, Oba Y, Ohura N, Uematsu M, Takahara M, Hamasaki T, Nanto S, Investigators OLIVE (2015) 3-Year outcomes of the OLIVE registry, a prospective multicenter study of patients with critical limb ischemia: a prospective, multi-center, three-year follow-up study on endovascular treatment for infra-inguinal vessel in patients with critical limb ischemia. JACC Cardiovasc Interv 8:1493–1502

    Article  Google Scholar 

  4. Jongsma H, Bekken JA, Akkersdijk GP, Hoeks SE, Verhagen HJ, Fioole B (2017) Angiosome-directed revascularization in patients with critical limb ischemia. J Vasc Surg 65:1208–1219

    Article  Google Scholar 

  5. Kabra A, Suresh KR, Vivekanand V, Vishnu M, Sumanth R, Nekkanti M (2013) Outcomes of angiosome and non-angiosome targeted revascularization in critical lower limb ischemia. J Vasc Surg 57:44–49

    Article  Google Scholar 

  6. Bosanquet DC, Glasbey JC, Williams IM, Twine CP (2014) Systematic review and meta-analysis of direct versus indirect angiosomal revascularisation of infrapopliteal arteries. Eur J Vasc Endovasc Surg 48:88–97

    Article  CAS  Google Scholar 

  7. Iida O, Nanto S, Uematsu M, Ikeoka K, Okamoto S, Dohi T, Fujita M, Terashi H, Nagata S (2010) Importance of the angiosome concept for endovascular therapy in patients with critical limb ischemia. Catheter Cardiovasc Interv 75:830–836

    PubMed  Google Scholar 

  8. Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, Mills JL, Ricco JB, Suresh KR, Murad MH, GVG Writing Group (2019) Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg 69:3S-125S

    Article  Google Scholar 

  9. Organisation ES, Tendera M, Aboyans V, Bartelink ML, Baumgartner I, Clément D, Collet JP, Cremonesi A, De Carlo M, Erbel R, Fowkes FG, Heras M, Kownator S, Minar E, Ostergren J, Poldermans D, Riambau V, Roffi M, Röther J, Sievert H, van Sambeek M, Zeller T, Committee ESC, for Practice Guidelines, (2011) ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the task force on the diagnosis and treatment of peripheral artery diseases of the European Society of Cardiology (ESC). Eur Heart J 32:2851–2906

    Article  Google Scholar 

  10. Aboyans V, Ricco JB, Bartelink MEL, Björck M, Brodmann M, Cohnert T, Collet JP, Czerny M, De Carlo M, Debus S, Espinola-Klein C, Kahan T, Kownator S, Mazzolai L, Naylor AR, Roffi M, Röther J, Sprynger M, Tendera M, Tepe G, Venermo M, Vlachopoulos C, Desormais I, ESC Scientific Document Group (2018) 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries endorsed by: the European Stroke Organization (ESO) the task force for the diagnosis and treatment of peripheral arterial diseases of the European society of cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J 39:763–816

    Article  Google Scholar 

  11. Mills JL Sr, Conte MS, Armstrong DG, Pomposelli FB, Schanzer A, Sidawy AN, Andros G, Society for Vascular Surgery Lower Extremity Guidelines Committee (2014) The society for vascular surgery lower extremity threatened limb classification system: risk stratification based on wound, ischemia, and foot infection (WIfI). J Vasc Surg 59:220–234

    Article  Google Scholar 

  12. Fukunaga M, Kawasaki D, Nishimura M, Yamagami M, Fujiwara R, Nakata T (2019) Clinical effects of planned endovascular therapy for critical limb ischemia patients with tissue loss. J Atheroscler Thromb 26:294–301

    Article  Google Scholar 

  13. Dalhousie University. Geriatric Medicine Research. Clinical Frailty Scale, available from https://www.dal.ca/sites/gmr/our-tools/clinical-frailty-scale.html (Retrieved on May 17, 2021)

  14. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA Sr, Williamson JD, Wright JT Jr (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American college of Cardiology/American heart association task force on clinical practice guidelines. Hypertension 71:1269–1324

    Article  CAS  Google Scholar 

  15. Kinoshita M, Yokote K, Arai H, Iida M, Ishigaki Y, Ishibashi S, Umemoto S, Egusa G, Ohmura H, Okamura T, Kihara S, Koba S, Saito I, Shoji T, Daida H, Tsukamoto K, Deguchi J, Dohi S, Dobashi K, Hamaguchi H, Hara M, Hiro T, Biro S, Fujioka Y, Maruyama C, Miyamoto Y, Murakami Y, Yokode M, Yoshida H, Rakugi H, Wakatsuki A, Yamashita S, Committee for Epidemiology and Clinical Management of Atherosclerosis (2018) Japan Atherosclerosis Society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases 2017. J Atheroscler Thromb 25:846–984

    Article  Google Scholar 

  16. Association AD (2019) Classification and diagnosis of diabetes: standards of medical care in diabetes-2019. Diabetes Care 42:S13–S28

    Article  Google Scholar 

  17. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458

    Article  CAS  Google Scholar 

  18. Kodama A, Meecham L, Popplewell M, Bate G, Conte MS, Bradbury AW (2020) Editor’s choice—relationship between Global Limb Anatomic Staging system (GLASS) and clinical outcomes following revascularisation for chronic limb threatening ischaemia in the Bypass Versus Angioplasty in Severe Ischaemia of the Leg (BASIL)-1 Trial. Eur J Vasc Endovasc Surg 60:687–695

    Article  Google Scholar 

  19. Tokuda T, Oba Y, Koshida R, Suzuki Y, Murata A, Ito T (2020) Prediction of the technical success of endovascular therapy in patients with critical limb threatening ischaemia using the global limb anatomical staging system. Eur J Vasc Endovasc Surg 60:696–702

    Article  Google Scholar 

  20. El Khoury R, Wu B, Edwards CT, Lancaster EM, Hiramoto JS, Vartanian SM, Schneider PA, Conte MS (2021) The Global Limb Anatomic Staging System (GLASS) is associated with outcomes of infrainguinal revascularization in chronic limb threatening ischemia. J Vasc Surg. https://doi.org/10.1016/S0741-5214(21)00146-4

    Article  PubMed  Google Scholar 

  21. Ferraresi R, Ucci A, Casini A, Caminiti M, Minnella D, Clerici G, Montero-Baker M (2020) GLASS (Global Limb Anatomic Staging System) a critical appraisal. J Cardiovasc Surg (Torino) 62:98–103

    Google Scholar 

  22. Liang P, Marcaccio CL, Darling JD, Kong D, Rao V, St John E, Wyers MC, Hamdan AD, Schermerhorn ML (2021) Validation of the global limb anatomical staging system in first-time lower extremity revascularization. J Vasc Surg 73:1683–1691

    Article  Google Scholar 

  23. Hata Y, Iida O, Takahara M, Asai M, Masuda M, Okamoto S, Ishihara T, Nanto K, Kanda T, Tsujimura T, Okuno S, Matsuda Y, Mano T (2020) Infrapopliteal anatomic severity and delayed wound healing in patients with chronic limb—threatening ischemia in the era of the global limb anatomic staging system. J Endovasc Ther 27:641–646

    Article  Google Scholar 

  24. Tokuda T, Oba Y, Koshida R, Kagase A, Matsuda H, Suzuki Y, Murata A, Ito T (2021) Validation of Global Limb Anatomical Staging System (GLASS) in patients with hemodialysis and chronic limb-threatening ischemia after endovascular treatment. Heart Vessels 36:809–817

    Article  Google Scholar 

  25. Singh GD, Armstrong EJ, Yeo KK, Singh S, Westin GG, Pevec WC, Dawson DL, Laird JR (2014) Endovascular recanalization of infrapopliteal occlusions in patients with critical limb ischemia. J Vasc Surg 59:1300–1307

    Article  Google Scholar 

  26. Tsubakimoto Y, Isodono K, Fujimoto T, Kirii Y, Shiraga A, Kasahara T, Ariyoshi M, Irie D, Sakatani T, Matsuo A, Inoue K, Fujita H (2021) IVUS-guided wiring improves the clinical outcomes of angioplasty for long femoropopliteal CTO compared with the conventional intraluminal approach. J Atheroscler Thromb 28:365–374

    Article  Google Scholar 

  27. Giannopoulos S, Palena LM, Armstrong EJ (2021) Technical success and complication rates of retrograde arterial access for endovascular therapy for critical limb ischaemia: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg 61:270–279

    Article  Google Scholar 

  28. Schneider PA, Laird JR, Tepe G, Brodmann M, Zeller T, Scheinert D, Metzger C, Micari A, Sachar R, Jaff MR, Wang H, Hasenbank MS, Krishnan P, IN.PACT SFA Trial Investigators (2018) Treatment effect of drug-coated balloons is durable to 3 years in the femoropopliteal arteries: long-term results of the IN PACT SFA randomized trial. Circ Cardiovasc Interv 11:e005891

    PubMed  PubMed Central  Google Scholar 

  29. Gray WA, Keirse K, Soga Y, Benko A, Babaev A, Yokoi Y, Schroeder H, Prem JT, Holden A, Popma J, Jaff MR, Diaz-Cartelle J, Müller-Hülsbeck S, IMPERIAL investigators, (2018) A polymer-coated, paclitaxel-eluting stent (Eluvia) versus a polymer-free, paclitaxel-coated stent (Zilver PTX) for endovascular femoropopliteal intervention (IMPERIAL): a randomised, non-inferiority trial. Lancet 392:1541–1551

    Article  CAS  Google Scholar 

  30. Garcia LA, Rosenfield KR, Metzger CD, Zidar F, Pershad A, Popma JJ, Zaugg M, Jaff MR, SUPERB investigators, (2017) SUPERB final 3-year outcomes using interwoven nitinol biomimetic supera stent. Catheter Cardiovasc Interv 89:1259–1267

    Article  Google Scholar 

  31. Geraghty PJ, Mewissen MW, Jaff MR, Ansel GM, VIBRANT Investigators (2013) Three-year results of the VIBRANT trial of VIABAHN endoprosthesis versus bare nitinol stent implantation for complex superficial femoral artery occlusive disease. J Vasc Surg 58:386–395

    Article  Google Scholar 

  32. Hassan AE, Nakao M, Katsumata H, Inagaki Y, Tanaka K, Otsuki H, Arashi H, Yamaguchi J, Hagiwara N (2021) Clinical outcomes after balloon angioplasty with crosser device for heavily calcified common femoral and popliteal artery disease. Heart Vessels 36:1359–1365

    Article  Google Scholar 

  33. Biasi L, Patel SD, Lea T, Donati T, Katsanos K, Partridge JS, Dhesi JK, Zayed H (2017) Complex infrapopliteal revascularization in elderly patients with critical limb ischemia: impact of multidisciplinary integrated care on mid-term outcome. J Cardiovasc Surg (Torino) 58:665–673

    Google Scholar 

  34. Schmidt A, Bausback Y, Piorkowski M, Wittig T, Banning-Eichenseer U, Thiele H, Aldmour S, Branzan D, Scheinert D, Steiner S (2019) Retrograde tibioperoneal access for complex infrainguinal occlusions: short- and long-term outcomes of 554 endovascular interventions. JACC Cardiovasc Interv 12:1714–1726

    Article  Google Scholar 

  35. Steering Committee TASC, Jaff MR, White CJ, Hiatt WR, Fowkes GR, Dormandy J, Razavi M, Reekers J, Norgren L (2015) An update on methods for revascularization and expansion of the TASC lesion classification to include below-the-knee arteries: a supplement to the Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Endovasc Ther 22:663–677

    Article  Google Scholar 

  36. Singh GD, Brinza EK, Hildebrand J, Waldo SW, Foley TR, Laird JR, Armstrong EJ (2017) Midterm outcomes after infrapopliteal interventions in patients with critical limb ischemia based on the TASC II classification of below-the-knee arteries. J Endovasc Ther 24:321–330

    Article  Google Scholar 

  37. Zeller T, Micari A, Scheinert D, Baumgartner I, Bosiers M, Vermassen FEG, Banyai M, Shishehbor MH, Wang H, Brodmann M, Trial Investigators INPACTDEEP (2020) The IN.PACT DEEP clinical drug-coated balloon trial: 5-year outcomes. JACC Cardiovasc Interv 13:431–443

    Article  Google Scholar 

  38. Geraghty PJ, Adams G, Schmidt A, Investigators TOBAIIBTK (2021) Six-month pivotal results of tack optimized balloon angioplasty using the tack endovascular system in below-the-knee arteries. J Vasc Surg 73:918–929

    Article  Google Scholar 

  39. Hobbs SD, Wilmink AB, Bradbury AW (2003) Ethnicity and peripheral arterial disease. Eur J Vasc Endovasc Surg 25:505–512

    Article  CAS  Google Scholar 

  40. Diehm N, Shang A, Silvestro A, Do DD, Dick F, Schmidli J, Mahler F, Baumgartner I (2006) Association of cardiovascular risk factors with pattern of lower limb atherosclerosis in 2659 patients undergoing angioplasty. Eur J Vasc Endovasc Surg 31:59–63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from institutional sources only.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiro Yamada.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, T., Shibahara, T., Nagase, M. et al. Validation of the correlation between angiosome-based target arterial path, mid-term limb-based patency, and the global limb anatomical staging system. Heart Vessels 37, 496–504 (2022). https://doi.org/10.1007/s00380-021-01937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-021-01937-5

Keywords

Navigation