Skip to main content
Log in

Predictors of abnormality in thallium myocardial perfusion scans for type 2 diabetes

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) increases coronary artery disease (CAD) risk. In this study, we used T2DM clinical variables to predict abnormality in thallium-201 myocardial perfusion scans (Th-201 scans). These clinical variables were summed stress score (SSS), summed rest score, and summed difference score (SDS), with data obtained from 368 male and 428 female participants with T2DM. Multiple linear regression results were as follows. In male participants, body mass index (BMI) and creatinine (Cr) were associated with SSS (β = 0.224, p < 0.001; β = 0.140, p = 0.022, respectively), and only BMI was associated with SDS (β = 0.174, p = 0.004). In female participants, BMI and high-density lipoprotein cholesterol level were associated with SSS (β = 0.240, p < 0.001; β =  − 0.120, p = 0.048, respectively), and only BMI was correlated with SDS (β = 0.123, p = 0.031). Our multivariate logistic regression indicated that in male and female participants, BMI was the only independent indicator of high SSS (SSS ≥ 9). In this study, we demonstrated that male patients have a higher SSS and SDS than female patients do in Th-201 scans for T2DM in a Chinese population. For male and female patients, BMI was the strongest predictor of abnormality in Th-201 scans. Our results can help clinicians identify patients with T2DM at high risk of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stamler J, Vaccaro O, Neaton JD, Wentworth D (1993) Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care 16:434–444

    CAS  PubMed  Google Scholar 

  2. Schramm TK, Gislason GH, Kober L, Rasmussen S, Rasmussen JN, Abildstrom SZ, Hansen ML, Folke F, Buch P, Madsen M, Vaag A, Torp-Pedersen C (2008) Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation 117:1945–1954

    CAS  PubMed  Google Scholar 

  3. Alabas OA, Hall M, Dondo TB, Rutherford MJ, Timmis AD, Batin PD, Deanfield JE, Hemingway H, Gale CP (2017) Long-term excess mortality associated with diabetes following acute myocardial infarction: a population-based cohort study. J Epidemiol Commun Health 71:25–32

    CAS  Google Scholar 

  4. (1997) Prevalence of unrecognized silent myocardial ischemia and its association with atherosclerotic risk factors in noninsulin-dependent diabetes mellitus. Milan study on atherosclerosis and diabetes (MiSAD) group. Am J Cardiol 79:134–139

  5. May O, Arildsen H, Damsgaard EM, Mickley H (1997) Prevalence and prediction of silent ischaemia in diabetes mellitus: a population-based study. Cardiovasc Res 34:241–247

    CAS  PubMed  Google Scholar 

  6. Passa P, Drouin P, Issa-Sayegh M, Blasco A, Masquet C, Monassier JP, Paillole C (1995) Coronary disease and diabetes. Diabete Metab 21:446–451

    CAS  PubMed  Google Scholar 

  7. (1998) Consensus development conference on the diagnosis of coronary heart disease in people with diabetes: 10–11 February 1998, Miami, Florida. American Diabetes Association. Diabetes Care 21: 1551–1559

  8. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, Wintersperger B, Reiser M, Becker CR, Steinbeck G, Boekstegers P (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    PubMed  Google Scholar 

  9. Hoffmann MH, Shi H, Manzke R, Schmid FT, De Vries L, Grass M, Brambs HJ, Aschoff AJ (2005) Noninvasive coronary angiography with 16-detector row CT: effect of heart rate. Radiology 234:86–97

    PubMed  Google Scholar 

  10. Mark DB, Hlatky MA, Harrell FE Jr, Lee KL, Califf RM, Pryor DB (1987) Exercise treadmill score for predicting prognosis in coronary artery disease. Ann Intern Med 106:793–800

    CAS  PubMed  Google Scholar 

  11. Mark DB, Shaw L, Harrell FE Jr, Hlatky MA, Lee KL, Bengtson JR, McCants CB, Califf RM, Pryor DB (1991) Prognostic value of a treadmill exercise score in outpatients with suspected coronary artery disease. N Engl J Med 325:849–853

    CAS  PubMed  Google Scholar 

  12. Giri S, Shaw LJ, Murthy DR, Travin MI, Miller DD, Hachamovitch R, Borges-Neto S, Berman DS, Waters DD, Heller GV (2002) Impact of diabetes on the risk stratification using stress single-photon emission computed tomography myocardial perfusion imaging in patients with symptoms suggestive of coronary artery disease. Circulation 105:32–40

    PubMed  Google Scholar 

  13. Scholte AJ, Schuijf JD, Kharagjitsingh AV, Dibbets-Schneider P, Stokkel MP, van der Wall EE, Bax JJ (2009) Prevalence and predictors of an abnormal stress myocardial perfusion study in asymptomatic patients with type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging 36:567–575

    CAS  PubMed  Google Scholar 

  14. Prior JO, Monbaron D, Koehli M, Calcagni ML, Ruiz J, Bischof Delaloye A (2005) Prevalence of symptomatic and silent stress-induced perfusion defects in diabetic patients with suspected coronary artery disease referred for myocardial perfusion scintigraphy. Eur J Nucl Med Mol Imaging 32:60–69

    PubMed  Google Scholar 

  15. Nakajima K, Yamasaki Y, Kusuoka H, Izumi T, Kashiwagi A, Kawamori R, Shimamoto K, Yamada N, Nishimura T (2009) Cardiovascular events in Japanese asymptomatic patients with type 2 diabetes: a 1-year interim report of a J-ACCESS 2 investigation using myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 36:2049–2057

    PubMed  Google Scholar 

  16. Catalan M, Herreras Z, Pinyol M, Sala-Vila A, Amor AJ, de Groot E, Gilabert R, Ros E, Ortega E (2015) Prevalence by sex of preclinical carotid atherosclerosis in newly diagnosed type 2 diabetes. Nutr Metab Cardiovasc Dis 25:742–748

    CAS  PubMed  Google Scholar 

  17. American Diabetes Association (2012) Diagnosis and classification of diabetes mellitus. Diabetes Care 35(Suppl 1):S1–2

    Google Scholar 

  18. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, Friedman J, Diamond GA (1998) Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation 97:535–543

    CAS  PubMed  Google Scholar 

  19. Gimelli A, Rossi G, Landi P, Marzullo P, Iervasi G, L'Abbate A, Rovai D (2009) Stress/rest myocardial perfusion abnormalities by gated SPECT: still the best predictor of cardiac events in stable ischemic heart disease. J Nucl Med 50:546–553

    PubMed  Google Scholar 

  20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    CAS  PubMed  Google Scholar 

  21. Danias PG, Papaioannou GI, Ahlberg AW, O'Sullivan DM, Mann A, Boden WE, Heller GV (2004) Usefulness of electrocardiographic-gated stress technetium-99m sestamibi single-photon emission computed tomography to differentiate ischemic from nonischemic cardiomyopathy. Am J Cardiol 94:14–19

    PubMed  Google Scholar 

  22. Miller TD, Roger VL, Hodge DO, Hopfenspirger MR, Bailey KR, Gibbons RJ (2001) Gender differences and temporal trends in clinical characteristics, stress test results and use of invasive procedures in patients undergoing evaluation for coronary artery disease. J Am Coll Cardiol 38:690–697

    CAS  PubMed  Google Scholar 

  23. Zafrir N, Mats I, Solodky A, Kornowski R, Sulkes J, Battler A (2010) Myocardial perfusion profile in a young population with and without known coronary artery disease: comparison by gender. Clin Cardiol 33:E39–43

    PubMed  Google Scholar 

  24. Yao MF, He J, Sun X, Ji XL, Ding Y, Zhao YM, Lou HY, Song XX, Shan LZ, Kang YX, Zhang SZ, Shan PF (2016) Gender differences in risks of coronary heart disease and stroke in patients with type 2 diabetes mellitus and their association with metabolic syndrome in China. Int J Endocrinol 2016:8483405

    PubMed  PubMed Central  Google Scholar 

  25. Wu YT, Chien CL, Wang SY, Yang WS, Wu YW (2013) Gender differences in myocardial perfusion defect in asymptomatic postmenopausal women and men with and without diabetes mellitus. J Womens Health (Larchmt) 22:439–444

    Google Scholar 

  26. Katzel LI, Sorkin KD, Colman E, Goldberg AP, Busby-Whitehead MJ, Lakatta LE, Becker LC, Lakatta EG, Fleg JL (1994) Risk factors for exercise-induced silent myocardial ischemia in healthy volunteers. Am J Cardiol 74:869–874

    CAS  PubMed  Google Scholar 

  27. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American heart association scientific statement on obesity and heart disease from the obesity committee of the council on nutrition, physical activity, and metabolism. Circulation 113:898–918

    PubMed  Google Scholar 

  28. Park GM, Lee Y, Won KB, Yang YJ, Park S, Ann SH, Kim YG, Yang DH, Kang JW, Lim TH, Kim HK, Choe J, Lee SW, Kim YH, Kim SJ, Lee SG (2019) High HDL-C levels reduce the risk of obstructive coronary artery disease in asymptomatic diabetics who achieved optimal glycemic control. Sci Rep 9:15306

    PubMed  PubMed Central  Google Scholar 

  29. Femlak M, Gluba-Brzozka A, Cialkowska-Rysz A, Rysz J (2017) The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids Health Dis 16:207

    PubMed  PubMed Central  Google Scholar 

  30. Adiels M, Olofsson SO, Taskinen MR, Boren J (2006) Diabetic dyslipidaemia. Curr Opin Lipidol 17:238–246

    CAS  PubMed  Google Scholar 

  31. Peters SA, Huxley RR, Woodward M (2014) Diabetes as a risk factor for stroke in women compared with men: a systematic review and meta-analysis of 64 cohorts, including 775,385 individuals and 12,539 strokes. Lancet 383:1973–1980

    PubMed  Google Scholar 

  32. Peters SA, Huxley RR, Woodward M (2014) Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia 57:1542–1551

    PubMed  Google Scholar 

  33. Mendelsohn ME, Karas RH (2005) Molecular and cellular basis of cardiovascular gender differences. Science 308:1583–1587

    CAS  PubMed  Google Scholar 

  34. Regitz-Zagrosek V (2006) Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat Rev Drug Discov 5:425–438

    CAS  PubMed  Google Scholar 

  35. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D (2004) Predictors of new-onset kidney disease in a community-based population. JAMA 291:844–850

    CAS  PubMed  Google Scholar 

  36. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    CAS  PubMed  Google Scholar 

  37. de Hauteclocque A, Ragot S, Slaoui Y, Gand E, Miot A, Sosner P, Halimi JM, Zaoui P, Rigalleau V, Roussel R, Saulnier PJ, Hadjadj Samy S (2014) The influence of sex on renal function decline in people with type 2 diabetes. Diabet Med 31:1121–1128

    PubMed  Google Scholar 

  38. Villar E, Chang SH, McDonald SP (2007) Incidences, treatments, outcomes, and sex effect on survival in patients with end-stage renal disease by diabetes status in Australia and New Zealand (1991 2005). Diabetes Care 30:3070–3076

    PubMed  Google Scholar 

  39. Messerli FH, Mancia G, Conti CR, Hewkin AC, Kupfer S, Champion A, Kolloch R, Benetos A, Pepine CJ (2006) Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous? Ann Intern Med 144:884–893

    PubMed  Google Scholar 

  40. McEvoy JW, Chen Y, Rawlings A, Hoogeveen RC, Ballantyne CM, Blumenthal RS, Coresh J, Selvin E (2016) Diastolic blood pressure, subclinical myocardial damage, and cardiac events: implications for blood pressure control. J Am Coll Cardiol 68:1713–1722

    PubMed  PubMed Central  Google Scholar 

  41. Fujishima S, Murakami N, Haga Y, Nyuta E, Nakate Y, Ishihara S, Kaseda S, Koga T, Ishitsuka T (2013) Low diastolic blood pressure was one of the independent predictors of ischemia-like findings of electrocardiogram in patients who underwent coronary angiography. J Cardiol 62:230–235

    PubMed  Google Scholar 

  42. Cooper-DeHoff RM, Gong Y, Handberg EM, Bavry AA, Denardo SJ, Bakris GL, Pepine CJ (2010) Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease. JAMA 304:61–68

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang D, Refaat M, Mohammedi K, Jayyousi A, Al Suwaidi J, Abi Khalil C (2017) Macrovascular complications in patients with diabetes and prediabetes. Biomed Res Int 2017:7839101

    PubMed  PubMed Central  Google Scholar 

  44. Srinivasan MP, Kamath PK, Bhat NM, Pai ND, Bhat RU, Shah TD, Singhal A, Mahabala C (2016) Severity of coronary artery disease in type 2 diabetes mellitus: does the timing matter? Indian Heart J 68:158–163

    PubMed  PubMed Central  Google Scholar 

  45. van Wijngaarden RPT, Overbeek JA, Heintjes EM, Schubert A, Diels J, Straatman H, Steyerberg EW, Herings RMC (2017) Relation between different measures of glycemic exposure and microvascular and macrovascular complications in patients with type 2 diabetes mellitus: an observational cohort study. Diabetes Ther 8:1097–1109

    PubMed  PubMed Central  Google Scholar 

  46. Wiersma JJ, Verberne HJ, Trip MD, ten Holt WL, van Eck-Smit BL, Piek JJ, Tijssen JG (2006) Prevalence of myocardial ischaemia as assessed with myocardial perfusion scintigraphy in patients with diabetes mellitus type 2 and mild anginal symptoms. Eur J Nucl Med Mol Imaging 33:1468–1476

    PubMed  Google Scholar 

  47. (1998) Intensive blood–glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK prospective diabetes study (UKPDS) group. Lancet 352: 837–853

  48. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559

    CAS  PubMed  Google Scholar 

  49. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572

    CAS  PubMed  Google Scholar 

  50. Gaede P, Lund-Andersen H, Parving HH, Pedersen O (2008) Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 358:580–591

    CAS  PubMed  Google Scholar 

  51. Yu NC, Su HY, Chiou ST, Yeh MC, Yeh SW, Tzeng MS, Sheu WH (2013) Trends of ABC control 2006–2011: a national survey of diabetes health promotion institutes in Taiwan. Diabetes Res Clin Pract 99:112–119

    CAS  PubMed  Google Scholar 

  52. Gimelli A, Liga R, Clemente A, Pasanisi EM, Favilli B, Marzullo P (2018) Appropriate choice of stress modality in patients undergoing myocardial perfusion scintigraphy with a cardiac camera equipped with solid-state detectors: the role of diabetes mellitus. Eur Heart J Cardiovasc Imaging 19:1268–1275

    PubMed  Google Scholar 

  53. Gimelli A, Liga R, Pasanisi EM, Casagranda M, Coceani M, Marzullo P (2016) Influence of cardiac stress protocol on myocardial perfusion imaging accuracy: The role of exercise level on the evaluation of ischemic burden. J Nucl Cardiol 23:1114–1122

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all participants in this study. This manuscript was edited by Wallace Academic Editing.

Funding

The work was supported by a Grant from Cardinal Tien Hospital (CTH106A-2B10).

Author information

Authors and Affiliations

Authors

Contributions

LC-H analyzed the data. LJ-D wrote the manuscript. WC-Z and CY-L reviewed and edited the manuscript. PD contributed to the discussion and edited the manuscript. LC-H and LY-J assisted with the data analysis and contributed to the discussion.

Corresponding author

Correspondence to Jiunn-Diann Lin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, CH., Pei, D., Wu, CZ. et al. Predictors of abnormality in thallium myocardial perfusion scans for type 2 diabetes. Heart Vessels 36, 180–188 (2021). https://doi.org/10.1007/s00380-020-01681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-020-01681-2

Keywords

Navigation