Skip to main content
Log in

Role of dipstick proteinuria for predicting cardiovascular events: a Japanese cardiovascular hospital database analysis

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Initial screening for proteinuria by urine dipstick test (UDT) may be useful for predicting clinical outcomes. The Shinken Database includes all the new patients visiting the Cardiovascular Institute Hospital in Tokyo, Japan. Patients for whom UDT was performed at their initial visit between 2004 and 2010 (n = 7131) were divided into three groups according to the test results: negative, trace, and positive (1+ to 4+) proteinuria. During the mean follow-up period of 3.4 years, 233 (3.1%) deaths, 255 (3.6%) heart failure (HF) events, and 106 (1.5%) ischemic stroke (IS) events occurred. Prevalence of atherothrombotic risks increased with an increase in the amounts of proteinuria. The incidence of all-cause death, HF and IS events increased significantly from negative to trace to positive proteinuria groups (log rank test, P for trend < 0.001). Multivariate analysis revealed independent association between proteinuria and all-cause death [hazard ratio (HR): 1.50, 95% confidence interval (CI) 1.07–2.10], HF (HR: 1.55, 95% CI 1.14–2.12), and IS (HR: 2.08, 95% CI 1.26–3.45). Even trace proteinuria was independently associated with HF (HR: 1.64, 95% CI 1.07–2.53) and IS (HR: 2.17, 95% CI 1.14–4.11) and with all-cause death (HR: 1.56, 95% CI 0.99–2.47). In conclusions, dipstick proteinuria was independently associated with cardiovascular events and death, suggesting that the UDT is a useful tool for evaluating patients’ risk for such adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1–266

  2. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A (1989) Albuminuria reflects widespread vascular damage. Steno Hypothesis Diabetol 32:219–226

    CAS  Google Scholar 

  3. Kario K, Matsuo T, Kobayashi H, Matsuo M, Sakata T, Miyata T, Shimada K (1996) Factor VII hyperactivity and endothelial cell damage are found in elderly hypertensives only when concomitant with microalbuminuria. Arterioscler Thromb Vasc Biol 16:455–461

    CAS  PubMed  Google Scholar 

  4. Liu Q, Han L, Chang F, Chen G, Li X, Xia L (2018) The relationship between the autonomic nervous function and early renal dysfunction in elderly patients with mild-to-moderate essential hypertension. Clin Exp Hypertens 40:136–140

    PubMed  Google Scholar 

  5. Mahmoodi BK, Gansevoort RT, Veeger NJ, Matthews AG, Navis G, Hillege HL, van der Meer J (2009) Microalbuminuria and risk of venous thromboembolism. JAMA 301:1790–1797

    CAS  PubMed  Google Scholar 

  6. van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, de Jong P, Gansevoort RT, van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey AS, de Jong PE, Gansevoort RT, Levey A, El-Nahas M, Eckardt KU, Kasiske BL, Ninomiya T, Chalmers J, Macmahon S, Tonelli M, Hemmelgarn B, Sacks F, Curhan G, Collins AJ, Li S, Chen SC, Hawaii Cohort KP, Lee BJ, Ishani A, Neaton J, Svendsen K, Mann JF, Yusuf S, Teo KK, Gao P, Nelson RG, Knowler WC, Bilo HJ, Joosten H, Kleefstra N, Groenier KH, Auguste P, Veldhuis K, Wang Y, Camarata L, Thomas B, Manley T (2011) Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 79:1341–1352

    PubMed  Google Scholar 

  7. Clase CM, Gao P, Tobe SW, McQueen MJ, Grosshennig A, Teo KK, Yusuf S, Mann JF (2011) Estimated glomerular filtration rate and albuminuria as predictors of outcomes in patients with high cardiovascular risk: a cohort study. Ann Intern Med 154:310–318

    PubMed  Google Scholar 

  8. Crowe E, Halpin D, Stevens P (2008) Early identification and management of chronic kidney disease: summary of NICE guidance. BMJ 337:a1530

    PubMed  Google Scholar 

  9. Miller WG, Bruns DE, Hortin GL, Sandberg S, Aakre KM, McQueen MJ, Itoh Y, Lieske JC, Seccombe DW, Jones G, Bunk DM, Curhan GC, Narva AS (2009) Current issues in measurement and reporting of urinary albumin excretion. Clin Chem 55:24–38

    CAS  PubMed  Google Scholar 

  10. Konta T, Kudo K, Sato H, Ichikawa K, Ikeda A, Suzuki K, Hirayama A, Shibata Y, Watanabe T, Daimon M, Kato T, Ueno Y, Kayama T, Kubota I (2013) Albuminuria is an independent predictor of all-cause and cardiovascular mortality in the Japanese population: the Takahata study. Clin Exp Nephrol 17:805–810

    CAS  PubMed  Google Scholar 

  11. Song JJ, Lee KB, Hyun YY, Kim H (2018) Trace albumin in the urine dipstick test is associated with coronary artery calcification in Korean adults. Nephron 140:169–174

    CAS  PubMed  Google Scholar 

  12. Suzuki S, Yamashita T, Ohtsuka T, Sagara K, Uejima T, Oikawa Y, Yajima J, Koike A, Nagashima K, Kirigaya H, Ogasawara K, Sawada H, Aizawa T (2008) Prevalence and prognosis of patients with atrial fibrillation in Japan: a prospective cohort of Shinken Database 2004. Circ J 72:914–920

    PubMed  Google Scholar 

  13. Suzuki S, Yamashita T, Otsuka T, Sagara K, Uejima T, Oikawa Y, Yajima J, Koike A, Nagashima K, Kirigaya H, Ogasawara K, Sawada H, Aizawa T (2011) Recent mortality of Japanese patients with atrial fibrillation in an urban city of Tokyo. J Cardiol 58:116–123

    PubMed  Google Scholar 

  14. Suzuki S, Otsuka T, Sagara K, Semba H, Kano H, Matsuno S, Takai H, Kato Y, Uejima T, Oikawa Y, Nagashima K, Kirigaya H, Kunihara T, Yajima J, Sawada H, Aizawa T, Yamashita T (2016) Nine-year trend of anticoagulation use, thromboembolic events, and major bleeding in patients with non-valvular atrial fibrillation—shinken database analysis. Circ J 80:639–649

    CAS  PubMed  Google Scholar 

  15. (1997) Implementation of the international statistical classification of diseases and related health problems, tenth revision (ICD-10). Epidemiol Bull 18: 1–4.

  16. Senoo K, Suzuki S, Sagara K, Otsuka T, Matsuno S, Uejima T, Oikawa Y, Yajima J, Nagashima K, Kirigaya H, Sawada H, Aizawa T, Lip GY, Yamashita T (2014) Coronary artery diseases in Japanese patients with nonvalvular atrial fibrillation. J Cardiol 63:123–127

    PubMed  Google Scholar 

  17. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A, Collaborators developing the Japanese equation for estimated GFR (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992

    CAS  Google Scholar 

  18. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, McAlister F, Garg AX (2006) Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 17:2034–2047

    PubMed  Google Scholar 

  19. Hannedouche T, Albouze G, Chauveau P, Lacour B, Jungers P (1993) Effects of blood pressure and antihypertensive treatment on progression of advanced chronic renal failure. Am J Kidney Dis 21:131–137

    CAS  PubMed  Google Scholar 

  20. Chen J, Muntner P, Hamm LL, Jones DW, Batuman V, Fonseca V, Whelton PK, He J (2004) The metabolic syndrome and chronic kidney disease in US adults. Ann Intern Med 140:167–174

    PubMed  Google Scholar 

  21. James MT, Hemmelgarn BR, Tonelli M (2010) Early recognition and prevention of chronic kidney disease. Lancet 375:1296–1309

    CAS  PubMed  Google Scholar 

  22. Goodman WG (2004) Importance of hyperphosphataemia in the cardio-renal axis. Nephrol Dial Transplant 19(Suppl 1):i4–8

    PubMed  Google Scholar 

  23. Amann K, Gross ML, London GM, Ritz E (1999) Hyperphosphataemia—a silent killer of patients with renal failure? Nephrol Dial Transplant 14:2085–2087

    CAS  PubMed  Google Scholar 

  24. Stenvinkel P, Wanner C, Metzger T, Heimburger O, Mallamaci F, Tripepi G, Malatino L, Zoccali C (2002) Inflammation and outcome in end-stage renal failure: does female gender constitute a survival advantage? Kidney Int 62:1791–1798

    PubMed  Google Scholar 

  25. Stuveling EM, Hillege HL, Bakker SJ, Asselbergs FW, de Jong PE, Gans RO, de Zeeuw D (2004) C-reactive protein and microalbuminuria differ in their associations with various domains of vascular disease. Atherosclerosis 172:107–114

    CAS  PubMed  Google Scholar 

  26. Tsuruoka S, Kai H, Usui J, Morito N, Saito C, Yoh K, Yamagata K (2013) Effects of irbesartan on inflammatory cytokine concentrations in patients with chronic glomerulonephritis. Intern Med 52:303–308

    CAS  PubMed  Google Scholar 

  27. Garg AX, Blake PG, Clark WF, Clase CM, Haynes RB, Moist LM (2001) Association between renal insufficiency and malnutrition in older adults: results from the NHANES III. Kidney Int 60:1867–1874

    CAS  PubMed  Google Scholar 

  28. Sundkvist G, Lilja B (1993) Autonomic neuropathy predicts deterioration in glomerular filtration rate in patients with IDDM. Diabetes Care 16:773–779

    CAS  PubMed  Google Scholar 

  29. Satchell S (2013) The role of the glomerular endothelium in albumin handling. Nat Rev Nephrol 9:717–725

    CAS  PubMed  Google Scholar 

  30. Glassock RJ, Denic A, Rule AD (2017) The conundrums of chronic kidney disease and aging. J Nephrol 30:477–483

    PubMed  Google Scholar 

  31. Nitta K, Okada K, Yanai M, Takahashi S (2013) Aging and chronic kidney disease. Kidney Blood Press Res 38:109–120

    PubMed  Google Scholar 

  32. Mancia G, Parati G (2003) The role of blood pressure variability in end-organ damage. J Hypertens Suppl 21:S17–23

    CAS  PubMed  Google Scholar 

  33. Jonsson S, Agic MB, Narfstrom F, Melville JM, Hultstrom M (2014) Renal neurohormonal regulation in heart failure decompensation. Am J Physiol Regul Integr Comp Physiol 307:R493–497

    PubMed  Google Scholar 

  34. Marti CN, Georgiopoulou VV, Kalogeropoulos AP (2013) Acute heart failure: patient characteristics and pathophysiology. Curr Heart Fail Rep 10:427–433

    PubMed  Google Scholar 

  35. Fleck A, Raines G, Hawker F, Trotter J, Wallace PI, Ledingham IM, Calman KC (1985) Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 1:781–784

    CAS  PubMed  Google Scholar 

  36. Chen Y, Cai L, Du Z, Xu J, Tan N, Ye Z, Liu S, Dong W, Shi W, Liang X (2017) Dipstick proteinuria is a prognostic indicator of short-term mortality in patients with heart failure. Int J Cardiol 230:59–63

    PubMed  Google Scholar 

  37. Park JI, Baek H, Kim BR, Jung HH (2017) Comparison of urine dipstick and albumin:creatinine ratio for chronic kidney disease screening: a population-based study. PLoS ONE 12:e0171106

    PubMed  PubMed Central  Google Scholar 

  38. White SL, Yu R, Craig JC, Polkinghorne KR, Atkins RC, Chadban SJ (2011) Diagnostic accuracy of urine dipsticks for detection of albuminuria in the general community. Am J Kidney Dis 58:19–28

    PubMed  Google Scholar 

  39. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081

    PubMed  PubMed Central  Google Scholar 

  40. Kwon Y, Han K, Kim YH, Park S, Kim DH, Roh YK, Park YG, Cho KH (2018) Dipstick proteinuria predicts all-cause mortality in general population: a study of 17 million Korean adults. PLoS ONE 13:e0199913

    PubMed  PubMed Central  Google Scholar 

  41. Webster AC, Nagler EV, Morton RL, Masson P (2017) Chronic kidney disease. Lancet 389:1238–1252

    PubMed  Google Scholar 

  42. Anders HJ, Davis JM, Thurau K (2016) Nephron protection in diabetic kidney disease. N Engl J Med 375:2096–2098

    PubMed  Google Scholar 

  43. Herrington WG, Preiss D, Haynes R, von Eynatten M, Staplin N, Hauske SJ, George JT, Green JB, Landray MJ, Baigent C, Wanner C (2018) The potential for improving cardio-renal outcomes by sodium–glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study. Clin Kidney J 11:749–761

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, Maschio G, Brenner BM, Kamper A, Zucchelli P, Becker G, Himmelmann A, Bannister K, Landais P, Shahinfar S, de Jong PE, de Zeeuw D, Lau J, Levey AS (2001) Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med 135:73–87

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shiro Ueda and Nobuko Ueda at Medical Edge Company, Ltd., for assembling the database using the Clinical Study Supporting System, and Yurika Hashiguchi, Takashi Osada, Hiroaki Arai, and Hiroshi Nakai for data management and system administration. We also thank Dr. Yasuo Okumura and Ms. Wendy Alexander-Adams for her help in reporting our findings in English.

Funding

This study was supported in part by the Practical Research Project for Lifestyle-Related Diseases including Cardiovascular Diseases and Diabetes Mellitus from the Japan Agency for Medical Research and Development, AMED (JP17ek0210082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riku Arai.

Ethics declarations

Conflict of interest

Dr. Suzuki received research funding from Tanabe-Mitsubishi, and Daiichi-Sankyo. Dr. Takayuki Otsuka received research funding and remuneration from Nippon Boehringer Ingelheim. Dr. Yamashita received research funding from Nippon Boehringer Ingelheim, Daiichi Sankyo, Bayer Healthcare, and Bristol-Myers Squibb, and remuneration from Nippon Boehringer Ingelheim, Daiichi Sankyo, Bayer Healthcare, Bristol-Myers Squibb, Pfizer, Toa Eiyo, and Ono Pharmaceutical.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, R., Suzuki, S., Kano, H. et al. Role of dipstick proteinuria for predicting cardiovascular events: a Japanese cardiovascular hospital database analysis. Heart Vessels 35, 1256–1269 (2020). https://doi.org/10.1007/s00380-020-01596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-020-01596-y

Keywords

Navigation