Skip to main content
Log in

Integrative analysis of transcriptome-wide association study data and mRNA expression profiles identified candidate genes and pathways associated with atrial fibrillation

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia characterized by extensive structural, contractile and electrophysiological remodeling. The genetic basis of AF remained elusive until now. Transcriptome-wide association study (TWAS) was conducted by FUSION tool using gene expression weights of 7 tissues combined with a large-scale genome-wide association study (GWAS) dataset of AF, totally involving 8180 AF cases and 28,612 controls. Significant genes identified by TWAS were then subjected to gene ontology (GO) and pathway enrichment analysis. The genome-wide mRNA gene expression profiling of AF was compared with the results of TWAS to detect common genes shared by TWAS and mRNA expression profiling of AF. TWAS detected a group of candidate genes with PTWAS values < 0.05 across the seven tissues for AF, such as CMAH (PTWAS = 3.15 × 10–25 for whole blood), INCENP (PTWAS = 1.77 × 10–22 for artery aorta), CMAHP (PTWAS = 4.57 × 10–20 for artery aorta). Pathway enrichment analysis identified multiple candidate pathways, such as protein K48-linked ubiquitination (P value = 0.0124), positive regulation of leukocyte chemotaxis (P value = 0.0046) and fatty acid degradation (P value = 0.0295). Further comparing the GO results of TWAS and mRNA expression profiling, 2 common GO terms were identified, including actin binding (PTWAS = 0.0446, PmRNA = 7.00 × 10–4) and extracellular matrix (PTWAS = 0.0037, PmRNA = 3.00 × 10–6). We detected multiple novel candidate genes, GO terms and pathways for AF, providing novel clues for understanding the genetic mechanism of AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schotten U, Duytschaever M, Ausma J, Eijsbouts S, Neuberger HR, Allessie M (2003) Electrical and contractile remodeling during the first days of atrial fibrillation go hand in hand. Circulation 107:1433

    Article  Google Scholar 

  2. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, Gillum RF, Kim YH, McAnulty JH Jr, Zheng ZJ, Forouzanfar MH, Naghavi M, Mensah GA, Ezzati M, Murray CJ (2014) Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation 129:837

    Article  Google Scholar 

  3. Fox CS, Parise H, D'Agostino RB Sr, Lloyd-Jones DM, Vasan RS, Wang TJ, Levy D, Wolf PA, Benjamin EJ (2004) Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA 291:2851–2855

    Article  CAS  Google Scholar 

  4. Arnar DO, Thorvaldsson S, Manolio TA, Thorgeirsson G, Kristjansson K, Hakonarson H, Stefansson K (2006) Familial aggregation of atrial fibrillation in Iceland. Eur Heart J 27:708

    Article  Google Scholar 

  5. Gudbjartsson DF, Hilma H, Solveig G, Gudmar T, Walters GB, Gudmundur T, Jeffrey G, Mathiesen EB, Inger NL, Audhild N (2009) A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet 41:876

    Article  CAS  Google Scholar 

  6. Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A, Chung MK, Sinner MF, de Bakker PI, Mueller M, Lubitz SA (2010) Common variants in KCNN3 are associated with lone atrial fibrillation. Nat Genet 42:240–244

    Article  CAS  Google Scholar 

  7. Degner JF, Pai AA, Piqueregi R, Veyrieras JB, Gaffney DJ, Pickrell JK, Leon SD, Michelini K, Lewellen N, Crawford GE (2012) DNase[thinsp]I sensitivity QTLs are a major determinant of human expression variation. Nature 482:390–394

    Article  CAS  Google Scholar 

  8. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, Raychaudhuri S (2013) Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 45:124–130

    Article  CAS  Google Scholar 

  9. Zhang L, Liu YZ, Zeng Y, Zhu W, Zhao YC, Zhang JG, Zhu JQ, He H, Shen H, Tian Q (2016) Network-based proteomic analysis for postmenopausal osteoporosis in Caucasian females. Proteomics 16:12–28

    Article  CAS  Google Scholar 

  10. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, Jansen R, De Geus EJ, Boomsma DI, Wright FA (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48:245

    Article  CAS  Google Scholar 

  11. Low SK, Takahashi A, Ebana Y, Ozaki K, Christophersen IE, Ellinor PT, Consortium A, Ogishima S, Yamamoto M, Satoh M (2017) Identification of six new genetic loci associated with atrial fibrillation in the Japanese population. Nat Genet 49:953–958

    Article  CAS  Google Scholar 

  12. Lamirault G, Gaborit N, Le Meur N, Chevalier C, Lande G, Demolombe S, Escande D, Nattel S, Léger JJ, Steenman M (2006) Gene expression profile associated with chronic atrial fibrillation and underlying valvular heart disease in man. J Mol Cell Cardiol 40:173–184

    Article  CAS  Google Scholar 

  13. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  Google Scholar 

  14. Li J, Solus J, Chen Q, Rho YH, Milne G, Stein CM, Darbar D (2010) Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm 7:438–444

    Article  Google Scholar 

  15. Rudolph V, Andrie RP, Rrudolph TK, Friedrichs K, Klinke A, Hirsch HB, Schwoerer AP, Lau D, Fu X, Klingel K, Sydow K (2010) Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat Med 16:470–474

    Article  CAS  Google Scholar 

  16. Fontes ML, Mathew JP, Rinder HM, Daniel Z, Smith BR, Rinder CS (2005) Atrial fibrillation after cardiac surgery/cardiopulmonary bypass is associated with monocyte activation. Anesth Analg 101:17

    Article  Google Scholar 

  17. Aimé-Sempé C, Folliguet T, Rücker-Martin C, Krajewska M, Krajewska S, Heimburger M, Aubier M, Mercadier JJ, Reed JC, Hatem SN (1999) Myocardial cell death in fibrillating and dilated human right atria. J Am Coll Cardiol 34:1577–1586

    Article  Google Scholar 

  18. Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A (1997) Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 96:1180–1184

    Article  CAS  Google Scholar 

  19. Zürner M, Schoch S (2009) The mouse and human liprin-α family of scaffolding proteins: genomic organization, expression profiling and regulation by alternative splicing. Genomics 93:243–253

    Article  Google Scholar 

  20. Claudia A, Veronica A, Antonio T, Simona P, Ivan DC (2009) Liprin-alpha1 promotes cell spreading on the extracellular matrix by affecting the distribution of activated integrins. J Cell Sci 122:3225

    Article  Google Scholar 

  21. Miguel SM, Gregus KA, Nichol RH, O'Toole SM, Gomez TM (2015) Regulation of ECM degradation and axon guidance by growth cone invadosomes. Development 142:486–496

    Article  Google Scholar 

  22. Kirby ML, Stewart DE (1983) Neural crest origin of cardiac ganglion cells in the chick embryo: identification and extirpation. Dev Biol 97:433–443

    Article  CAS  Google Scholar 

  23. Owais K, Bartz TM, Ix JH, Heckbert SR, Kizer JR, Zieman SJ, Mukamal KJ, Tracy RP, Siscovick DS, Luc D (2012) Plasma free fatty acids and risk of atrial fibrillation (from the cardiovascular health study). Am J Cardiol 110:212–216

    Article  Google Scholar 

  24. Khawaja O, Bartz TM, Ix JH, Heckbert SR, Kizer JR, Zieman SJ, Mukamal KJ, Tracy RP, Siscovick DS, Djouss L (2012) Plasma free fatty acids and risk of atrial fibrillation (from the cardiovascular health study). American Journal of Cardiology 110:212–216

    Article  CAS  Google Scholar 

  25. Paolisso G, Gualdiero P, Manzella D, Rizzo MR, Tagliamonte MR, Gambardella A, Verza M, Gentile S, Varricchio M, D'Onofrio F (1997) Association of fasting plasma free fatty acid concentration and frequency of ventricular premature complexes in nonischemic non-insulin-dependent diabetic patients. Am J Cardiol 80:932–937

    Article  CAS  Google Scholar 

  26. Soloff LA (1970) Arrhythmias following infusions of fatty acids. Am Heart J 80:671–674

    Article  CAS  Google Scholar 

  27. Kurien VA, Oliver MF (1970) A metabolic cause for arrhythmias during acute myocardial hypoxia. Lancet 295:813–815

    Article  Google Scholar 

  28. Kelly RA, O'Hara DS (1985) Characterization of digitalis-like factors in human plasma. Interactions with NaK-ATPase and cross-reactivity with cardiac glycoside-specific antibodies. J Biol Chem 260:11396

    CAS  PubMed  Google Scholar 

  29. Lin Q, Jia L, Sun Y (2012) A pilot study of circulating PPAR-γ receptor protein in elderly patients with atrial fibrillation. Arch Med Sci AMS 8:471–476

    Article  CAS  Google Scholar 

  30. Xiaoping C, Ziyi B, Jiyun H, Lingyun J, Xiaojia L, Yanling S, Bing K, Dejia H, Yuquan W (2010) Downregulation of peroxisome proliferator-activated receptor-gamma expression in hypertensive atrial fibrillation. Clin Cardiol 32:337–345

    Google Scholar 

  31. Inden Y, Kitamura K, Uchikawa T, Harata S (2008) Pioglitazone, a peroxisome proliferator-activated receptor-gamma activator, attenuates atrial fibrosis and atrial fibrillation promotion in rabbits with congestive heart failure. Heart Rhythm Off J Heart Rhythm Soc 5:451–459

    Article  Google Scholar 

  32. Gu J, Liu X, Wang X, Shi H, Tan H, Zhou L, Gu J, Jiang W, Wang Y (2011) Beneficial effect of pioglitazone on the outcome of catheter ablation in patients with paroxysmal atrial fibrillation and type 2 diabetes mellitus. Europace 13:1256–1261

    Article  Google Scholar 

  33. Lappalainen T, Sammeth M, Friedländer MR, 't Hoen PA, Monlong J, Rivas MA, Gonzàlez-Porta M, Kurbatova N, Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, van Iterson M, Almlöf J, Ribeca P, Pulyakhina I, Esser D, Giger T, Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, Buermans HP, Padioleau I, Schwarzmayr T, Karlberg O, Ongen H, Kilpinen H, Beltran S, Gut M, Kahlem K, Amstislavskiy V, Stegle O, Pirinen M, Montgomery SB, Donnelly P, McCarthy MI, Flicek P, Strom TM, Lehrach H, Schreiber S, Sudbrak R, Carracedo A, Antonarakis SE, Häsler R, Syvänen AC, van Ommen GJ, Brazma A, Meitinger T, Rosenstiel P, Guigó R, Gut IG, Estivill X, Dermitzakis ET, Geuvadis Consortium (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501(7468):506–511

    Article  CAS  Google Scholar 

  34. Xiaoling Z, Roby J, Chen BH, Tianxiao H, Saixia Y, Munson PJ, Johnson AD, Daniel L, O'Donnell CJ (2015) Identification of common genetic variants controlling transcript isoform variation in human whole blood. Nat Genet 47:345–352

    Article  Google Scholar 

  35. Raj T, Rothamel K, Mostafavi S, Ye C, Lee MN, Replogle JM, Feng T, Lee M, Asinovski N, Frohlich I (2014) Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344:519–523

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Scientific Foundation of China (81472925, 81673112); the Key projects of international cooperation among governments in scientific and technological innovation (2016YFE0119100); the Natural Science Basic Research Plan in Shaanxi Province of China (2017JZ024);Program for Tackling Key Problems in Shannxi Provincial Science and Technology (2016SF-288); and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

LZ and LL drafted the manuscript, FZ designed the study. MM, SC, YZ, HH, XL and PL performed the statistical analyses. YW, BC, CL, MD, QX and YD provided feasible advice on data analysis and drafting manuscript. All authors read and approved the final manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Feng Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, L., Ma, M. et al. Integrative analysis of transcriptome-wide association study data and mRNA expression profiles identified candidate genes and pathways associated with atrial fibrillation. Heart Vessels 34, 1882–1888 (2019). https://doi.org/10.1007/s00380-019-01418-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-019-01418-w

Keywords

Navigation