Advertisement

Microbubble contrast enhancement of neointima after drug-eluting stent implantation: an optical coherence tomography study

  • Norikiyo Oka
  • Tadayuki Kadohira
  • Kenichi Fujii
  • Hideki Kitahara
  • Yoshihide Fujimoto
  • Yoshio Kobayashi
Original Article

Abstract

Microvessels within neoatherosclerosis are associated with vulnerability and increase from the early to the very late phase after drug-eluting stent implantation. Microbubble contrast agents have been suggested to enhance tissue microvasculature for optical coherence tomography (OCT) imaging. The present study investigated whether OCT signal intensity of neointima within stented segments was enhanced after intracoronary administration of microbubble contrast agents. A total of 40 patients who underwent follow-up coronary angiography after drug-eluting stent implantation were enrolled. At the time of follow-up coronary angiography, OCT images of the stented segments were recorded before and after intracoronary administration of microbubble contrast agents. Mean OCT signal intensity of neointima after microbubble administration significantly increased [95.5 (85.7, 106.2) vs. 96.5 (88.7, 109.9), p = 0.001]. Multivariate analysis demonstrated the relationship between diabetes and greater neointima enhancement. The change in the OCT signal intensity of neointima following microbubble administration tended to be higher in diabetic patients than in non-diabetic patients [4.6 (0.6, 8.5) vs. 1.4 (− 1.1, 3.0), p = 0.05]. These findings suggest that this methodology may allow identification of neovascularization in neointima and evaluation of vulnerability of neoatherosclerosis. Microvessels in neointima may be a future target of pharmacological and interventional innovations for preventing stent failure.

Keywords

Neointima Neoatherosclerosis Microvessel Optical coherence tomography Microbubble 

Abbreviations

CSA

Cross-sectional area

IQR

Interquartile range

OCT

Optical coherence tomography

NIH

Neointimal hyperplasia

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    Otsuka F, Byrne RA, Yahagi K, Mori H, Ladich E, Fowler DR, Kutys R, Xhepa E, Kastrati A, Virmani R, Joner M (2015) Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. Eur Heart J 36:2147–2159CrossRefPubMedGoogle Scholar
  2. 2.
    Nakazawa G, Otsuka F, Nakano M, Vorpahl M, Yazdani SK, Ladich E, Kolodgie FD, Finn AV, Virmani R (2011) The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol 57:1314–1322CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nakazawa G, Vorpahl M, Finn AV, Narula J, Virmani R (2009) One step forward and two steps back with drug-eluting-stents: from preventing restenosis to causing late thrombosis and nouveau atherosclerosis. JACC Cardiovasc Imaging 2:625–628CrossRefPubMedGoogle Scholar
  4. 4.
    Habara M, Terashima M, Nasu K, Kaneda H, Yokota D, Ito T, Kurita T, Teramoto T, Kimura M, Kinoshita Y, Tsuchikane E, Asakura Y, Suzuki T (2013) Morphological differences of tissue characteristics between early, late, and very late restenosis lesions after first generation drug-eluting stent implantation: an optical coherence tomography study. Eur Heart J Cardiovasc Imaging 14:276–284CrossRefPubMedGoogle Scholar
  5. 5.
    Taruya A, Tanaka A, Nishiguchi T, Matsuo Y, Ozaki Y, Kashiwagi M, Shiono Y, Orii M, Yamano T, Ino Y, Hirata K, Kubo T, Akasaka T (2015) Vasa vasorum restructuring in human atherosclerotic plaque vulnerability: a clinical optical coherence tomography study. J Am Coll Cardiol 65:2469–2477CrossRefPubMedGoogle Scholar
  6. 6.
    Suzuki N, Kozuma K, Kyono H, Otsuki S, Fu Q, Hosogoe N, Saito T, Naito K, Ochiai M, Ishikawa S, Watanabe H, Miyazawa A, Eto K, Isshiki T (2013) Predominant microvessel proliferation in coronary stent restenotic tissue in patients with diabetes: insights from optical coherence tomography image analysis. Int J Cardiol 168:843–847CrossRefPubMedGoogle Scholar
  7. 7.
    Saito K, Nagatsuka K, Ishibashi-Ueda H, Watanabe A, Kannki H, Iihara K (2014) Contrast-enhanced ultrasound for the evaluation of neovascularization in atherosclerotic carotid artery plaques. Stroke 45:3073–3075CrossRefPubMedGoogle Scholar
  8. 8.
    Staub D, Patel MB, Tibrewala A, Ludden D, Johnson M, Espinosa P, Coll B, Jaeger KA, Feinstein SB (2010) Vasa vasorum and plaque neovascularization on contrast-enhanced carotid ultrasound imaging correlates with cardiovascular disease and past cardiovascular events. Stroke 41:41–47CrossRefPubMedGoogle Scholar
  9. 9.
    Assadi H, Demidov V, Karshafian R, Douplik A, Vitkin IA (2016) Microvascular contrast enhancement in optical coherence tomography using microbubbles. J Biomed Opt 21:76014–76018CrossRefPubMedGoogle Scholar
  10. 10.
    Barton JK, Hoying JB, Sullivan CJ (2002) Use of microbubbles as an optical coherence tomography contrast agent. Acad Radiol 9(Suppl 1):S52–S55CrossRefPubMedGoogle Scholar
  11. 11.
    Assadi H, Karshafian R, Douplik A (2014) Optical scattering properties of intralipid phantom in presence of encapsulated microbubbles. Int J Photoenergy 2014:1–9CrossRefGoogle Scholar
  12. 12.
    Kadohira T, Kobayashi Y (2017) Intravascular ultrasound-guided drug-eluting stent implantation. Cardiovasc Interv Ther 32:1–11CrossRefPubMedGoogle Scholar
  13. 13.
    Kim JS, Hong MK, Shin DH, Kim BK, Ko YG, Choi D, Jang Y (2012) Quantitative and qualitative changes in DES-related neointimal tissue based on serial OCT. JACC Cardiovasc Imaging 5:1147–1155.  https://doi.org/10.1016/j.jcmg.2012.01.024 CrossRefPubMedGoogle Scholar
  14. 14.
    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, De Silva R, Dijkstra J, Di Mario C, Dudeck D, Falk E, Feldman MD, Fitzgerald P, Garcia H, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CCS, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Rber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PWJC, Shimada K, Shinke T, Shite J, Siegel E, Sonada S, Suter M, Takarada S, Tanaka A, Terashima M, Troels T, Uemura S, Ughi GJ, Van Beusekom HMM, Van Der Steen AFW, Van Es GA, Van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59:1058–1072.  https://doi.org/10.1016/j.jacc.2011.09.079 CrossRefPubMedGoogle Scholar
  15. 15.
    Di Vito L, Yoon JH, Kato K, Yonetsu T, Vergallo R, Costa M, Bezerra HG, Arbustini E, Narula J, Crea F, Prati F, Jang I-K, COICO Group (Consortium of Investigators for Coronary OCT) (2014) Comprehensive overview of definitions for optical coherence tomography-based plaque and stent analyses. Coron Artery Dis 25:172–185CrossRefPubMedGoogle Scholar
  16. 16.
    Kitabata H, Tanaka A, Kubo T, Takarada S, Kashiwagi M, Tsujioka H, Ikejima H, Kuroi A, Kataiwa H, Ishibashi K, Komukai K, Tanimoto T, Ino Y, Hirata K, Nakamura N, Mizukoshi M, Imanishi T, Akasaka T (2010) Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease. Am J Cardiol 105:1673–1678CrossRefPubMedGoogle Scholar
  17. 17.
    Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, Wrenn SP, Narula J (2005) Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 25:2054–2061CrossRefPubMedGoogle Scholar
  18. 18.
    Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, Farb A, Guerrero LJ, Hayase M, Kutys R, Narula J, Finn AV, Virmani R (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325CrossRefPubMedGoogle Scholar
  19. 19.
    Gao L, Park S-J, Jang Y, Lee S, Kim C-J, Minami Y, Ong D, Soeda T, Vergallo R, Lee H, Yu B, Uemura S, Jang I-K (2015) Comparison of neoatherosclerosis and neovascularization between patients with and without diabetes: an optical coherence tomography study. JACC Cardiovasc Interv 8:1044–1052CrossRefPubMedGoogle Scholar
  20. 20.
    Nakamura D, Lee Y, Yoshimura T, Taniike M, Makino N, Kato H, Egami Y, Shutta R, Tanouchi J, Yamada Y, Hara M, Sakata Y, Hamasaki T, Nishino M (2014) Different serial changes in the neointimal condition of sirolimus-eluting stents and paclitaxel-eluting stents: an optical coherence tomographic study. EuroIntervention 10:924–933.  https://doi.org/10.4244/EIJV10I8A159 CrossRefPubMedGoogle Scholar
  21. 21.
    Kubo T, Akasaka T, Tanimoto T, Takano M, Seino Y, Nasu K, Itoh T, Mizuno K, Okura H, Shinke T, Kotani JI, Ito S, Yokoi H, Muramatsu T, Nakamura M, Nanto S (2016) Assessment of vascular response after drug-eluting stents implantation in patients with diabetes mellitus: an optical coherence tomography sub-study of the J-DESsERT. Heart Vessels 31:465–473.  https://doi.org/10.1007/s00380-015-0636-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiovascular MedicineChiba University Graduate School of MedicineChibaJapan

Personalised recommendations