Skip to main content

Effects of lowest-dose vs. highest-dose pitavastatin on coronary neointimal hyperplasia at 12-month follow-up in type 2 diabetic patients with non-ST elevation acute coronary syndrome: an optical coherence tomography analysis

Abstract

Current ACC/AHA guidelines recommend high-dose statin therapy after coronary stenting, especially in diabetic patients; however, pitavastatin 4 mg or pitavastatin 1 mg are frequently used after coronary stenting in Asia, even in patients with acute coronary syndrome. We compared the effects of highest-dose and lowest-dose pitavastatin therapy on coronary neointimal hyperplasia at 12-month follow-up in diabetic patients with non-ST-elevation acute coronary syndrome (NSTE-ACS) using optical coherence tomography. A total of 72 diabetic patients with NSTE-ACS were randomized to lowest-dose pitavastatin [1 mg (n = 36)] or highest-dose pitavastatin [4 mg (n = 36)] after everolimus-eluting stent implantation. The primary endpoint was to compare the normalized neointimal volume at 12-month follow-up. Normalized neointimal volume was significantly lower in the pitavastatin 4 mg group (4.00 ± 2.80 vs. 8.24 ± 2.83 mm3/mm, p < 0.01) at 12-month follow-up. There was also significant difference in neointimal area between the pitavastatin 4 mg group and pitavastatin 1 mg group (0.41 ± 0.28 vs. 0.74 ± 0.23 mm2, p < 0.01). Improvement of brachial artery flow-mediated dilation (baFMD) was significantly higher in the pitavastatin 4 mg group than in pitavastatin 1 mg group (0.15 ± 0.15 vs. − 0.03 ± 0.19 mm, p < 0.001). In addition, the improvement of adiponectin levels was significantly greater in the pitavastatin 4 mg group than in the pitavastatin 1 mg group (2.97 ± 3.98 vs. 0.59 ± 2.80 μg/mL, p < 0.05). Pitavastatin 4 mg significantly improved inflammatory cytokines and lipid profiles compared to pitavastatin 1 mg during the 12-month follow-up, contributing to the reduction of neointimal hyperplasia and to the improvement of baFMD in diabetic patients with NSTE-ACS requiring coronary stenting. Thus, the administration of pitavastatin 4 mg can be safely and effectively used in high-risk patients requiring coronary stenting.

Trial registration NCT02545231 (Clinical Trial registration information: https://clinicaltrials.gov/ct2/show/NCT02545231)

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Hong SJ, Ahn CM, Kim BK, Ko YG, Hur SH, Yu CW, Lee SJ, Choi CU, Kim JS, Yoon JH, Hong YJ, Choi JW, Choi SH, Jang Y, Lim DS, Investigator R-I (2016) Prospective randomized comparison of clinical and angiographic outcomes between everolimus-eluting vs. zotarolimus-eluting stents for treatment of coronary restenosis in drug-eluting stents: intravascular ultrasound volumetric analysis (RESTENT-ISR trial). Eur Heart J 37:3409–3418

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Stettler C, Wandel S, Allemann S, Kastrati A, Morice MC, Schomig A, Pfisterer ME, Stone GW, Leon MB, de Lezo JS, Goy JJ, Park SJ, Sabate M, Suttorp MJ, Kelbaek H, Spaulding C, Menichelli M, Vermeersch P, Dirksen MT, Cervinka P, Petronio AS, Nordmann AJ, Diem P, Meier B, Zwahlen M, Reichenbach S, Trelle S, Windecker S, Juni P (2007) Outcomes associated with drug-eluting and bare-metal stents: a collaborative network meta-analysis. Lancet 370:937–948

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Hong SJ, Kim MH, Ahn TH, Ahn YK, Bae JH, Shim WJ, Ro YM, Lim DS (2006) Multiple predictors of coronary restenosis after drug-eluting stent implantation in patients with diabetes. Heart 92:1119–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Gilbert RE (2013) Endothelial loss and repair in the vascular complications of diabetes: pathogenetic mechanisms and therapeutic implications. Circ J 77:849–856

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Iijima R, Ndrepepa G, Kujath V, Harada Y, Kufner S, Schunkert H, Nakamura M, Kastrati A (2017) A pan-coronary artery angiographic study of the association between diabetes mellitus and progression or regression of coronary atherosclerosis. Heart Vessels 32:376–384

    Article  PubMed  Google Scholar 

  6. 6.

    Zhang L, Gong D, Li S, Zhou X (2012) Meta-analysis of the effects of statin therapy on endothelial function in patients with diabetes mellitus. Atherosclerosis 223:78–85

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Takayama T, Hiro T, Ueda Y, Saito S, Kodama K, Komatsu S, Hirayama A (2015) Remodeling pattern is related to the degree of coronary plaque regression induced by pitavastatin: a sub-analysis of the TOGETHAR trial with intravascular ultrasound and coronary angioscopy. Heart Vessels 30:169–176

    Article  PubMed  Google Scholar 

  9. 9.

    Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW, American College of Cardiology/American Heart Association Task Force on Practice G (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:2889–2934

    Article  PubMed  Google Scholar 

  10. 10.

    Committee for the Korean Guidelines for the Management of D (2016) 2015 Korean guidelines for the management of dyslipidemia: executive summary (English translation). Korean Circ J 46:275–306

    Article  CAS  Google Scholar 

  11. 11.

    Kwon JE, Kim Y, Hyun S, Won H, Shin SY, Lee KJ, Kim S-W, Kim TH, Kim CJ (2014) Cholesterol lowering effects of low-dose statins in Korean patients. J Lipid Atheroscler 3:21–28

    Article  CAS  Google Scholar 

  12. 12.

    Khang AR, Song YS, Kim KM, Moon JH, Lim S, Park KS, Jang HC, Choi SH (2016) Comparison of different statin therapy to change low-density lipoprotein cholesterol and high-density lipoprotein cholesterol level in Korean patients with and without diabetes. J Clin Lipidol 10(528–537):e523

    Google Scholar 

  13. 13.

    Kim HS, Lee H, Lee SH, Jeong YJ, Kim TM, Yang SJ, Baik SJ, Kim H, Lee SH, Cho JH, Choi IY, Yoon KH, Kim JH (2017) Use of moderate-intensity statins for low-density lipoprotein cholesterol level above 190 mg/dL at baseline in Koreans. Basic Clin Pharmacol Toxicol 121(4):272–278

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Kim MJ, Jeon DS, Gwon HC, Kim SJ, Chang K, Kim HS, Tahk SJ, Korean MI (2012) Current statin usage for patients with acute coronary syndrome undergoing percutaneous coronary intervention: multicenter survey in Korea. Clin Cardiol 35:700–706

    Article  PubMed  Google Scholar 

  15. 15.

    Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Raber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G, International Working Group for Intravascular Optical Coherence T (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59:1058–1072

    Article  PubMed  Google Scholar 

  16. 16.

    Sotomi Y, Tateishi H, Suwannasom P, Dijkstra J, Eggermont J, Liu S, Tenekecioglu E, Zheng Y, Abdelghani M, Cavalcante R, de Winter RJ, Wykrzykowska JJ, Onuma Y, Serruys PW, Kimura T (2016) Quantitative assessment of the stent/scaffold strut embedment analysis by optical coherence tomography. Int J Cardiovasc Imaging 32:871–883

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kim JS, Lee JH, Shin DH, Kim BK, Ko YG, Choi D, Jang Y, Hong MK (2014) Long-term outcomes of neointimal hyperplasia without neoatherosclerosis after drug-eluting stent implantation. JACC Cardiovasc Imaging 7:788–795

    Article  PubMed  Google Scholar 

  18. 18.

    Gonzalo N, Serruys PW, Okamura T, van Beusekom HM, Garcia-Garcia HM, van Soest G, van der Giessen W, Regar E (2009) Optical coherence tomography patterns of stent restenosis. Am Heart J 158:284–293

    Article  PubMed  Google Scholar 

  19. 19.

    Jeong HS, Hong SJ, Cho SA, Kim JH, Cho JY, Lee SH, Joo HJ, Park JH, Yu CW, Lim DS (2017) Comparison of ticagrelor versus prasugrel for inflammation, vascular function, and circulating endothelial progenitor cells in diabetic patients with non-ST-segment elevation acute coronary syndrome requiring coronary stenting: a prospective, randomized, crossover trial. JACC Cardiovasc Interv 10:1646–1658

    Article  PubMed  Google Scholar 

  20. 20.

    Hong SJ, Choi SC, Ahn CM, Park JH, Kim JS, Lim DS (2011) Telmisartan reduces neointima volume and pulse wave velocity 8 months after zotarolimus-eluting stent implantation in hypertensive type 2 diabetic patients. Heart 97:1425–1432

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Iannaccone M, D’Ascenzo F, Templin C, Omede P, Montefusco A, Guagliumi G, Serruys PW, Di Mario C, Kochman J, Quadri G, Biondi-Zoccai G, Luscher TF, Moretti C, D’Amico M, Gaita F, Stone GW (2017) Optical coherence tomography evaluation of intermediate-term healing of different stent types: systemic review and meta-analysis. Eur Heart J Cardiovasc Imaging 18:159–166

    Article  PubMed  Google Scholar 

  22. 22.

    Choi HH, Kim JS, Yoon DH, Hong KS, Kim TH, Kim BK, Ko YG, Choi D, Jang Y, Hong MK (2012) Favorable neointimal coverage in everolimus-eluting stent at 9 months after stent implantation: comparison with sirolimus-eluting stent using optical coherence tomography. Int J Cardiovasc Imaging 28:491–497

    Article  PubMed  Google Scholar 

  23. 23.

    Kim JS, Hong MK, Shin DH, Kim BK, Ko YG, Choi D, Jang Y (2012) Quantitative and qualitative changes in DES-related neointimal tissue based on serial OCT. JACC Cardiovasc Imaging 5:1147–1155

    Article  PubMed  Google Scholar 

  24. 24.

    Iannaccone M, Quadri G, Taha S, D’Ascenzo F, Montefusco A, Omede P, Jang IK, Niccoli G, Souteyrand G, Yundai C, Toutouzas K, Benedetto S, Barbero U, Annone U, Lonni E, Imori Y, Biondi-Zoccai G, Templin C, Moretti C, Luscher TF, Gaita F (2016) Prevalence and predictors of culprit plaque rupture at OCT in patients with coronary artery disease: a meta-analysis. Eur Heart J Cardiovasc Imaging 17:1128–1137

    Article  PubMed  Google Scholar 

  25. 25.

    Hanke H, Strohschneider T, Oberhoff M, Betz E, Karsch KR (1990) Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ Res 67:651–659

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Aronson D, Bloomgarden Z, Rayfield EJ (1996) Potential mechanisms promoting restenosis in diabetic patients. J Am Coll Cardiol 27:528–535

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Kornowski R, Hong MK, Tio FO, Bramwell O, Wu H, Leon MB (1998) In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol 31:224–230

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Blanco-Colio LM, Tunon J, Martin-Ventura JL, Egido J (2003) Anti-inflammatory and immunomodulatory effects of statins. Kidney Int 63:12–23

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Maron DJ, Fazio S, Linton MF (2000) Current perspectives on statins. Circulation 101:207–213

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Gili S, Iannaccone M, Colombo F, Montefusco A, Amabile N, Calcagno S, Capodanno D, Scalone G, Rognoni A, Omede P, Ugo F, Cavallo E, Mancone M, Mangiameli A, Boccuzzi G, Hiansen J, Motreff P, Toutouzas K, Garbo R, Sardella G, Tamburino C, D’Amico M, Moretti C, Templin C, Gaita F, Souteyrand G, Niccoli G, D’Ascenzo F (2017) Effects of statins on plaque rupture assessed by optical coherence tomography in patients presenting with acute coronary syndromes: insights from the optical coherence tomography (OCT)-FORMIDABLE registry. Eur Heart J Cardiovasc Imaging 19(5):524–531

    Article  Google Scholar 

  31. 31.

    Morikawa S, Takabe W, Mataki C, Kanke T, Itoh T, Wada Y, Izumi A, Saito Y, Hamakubo T, Kodama T (2002) The effect of statins on mRNA levels of genes related to inflammation, coagulation, and vascular constriction in HUVEC. Human umbilical vein endothelial cells. J Atheroscler Thromb 9:178–183

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Yokoyama T, Miyauchi K, Kurata T, Satoh H, Daida H (2004) Inhibitory efficacy of pitavastatin on the early inflammatory response and neointimal thickening in a porcine coronary after stenting. Atherosclerosis 174:253–259

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Charakida M, Masi S, Luscher TF, Kastelein JJ, Deanfield JE (2010) Assessment of atherosclerosis: the role of flow-mediated dilatation. Eur Heart J 31:2854–2861

    Article  PubMed  Google Scholar 

  34. 34.

    Patti G, Pasceri V, Melfi R, Goffredo C, Chello M, D’Ambrosio A, Montesanti R, Di Sciascio G (2005) Impaired flow-mediated dilation and risk of restenosis in patients undergoing coronary stent implantation. Circulation 111:70–75

    Article  PubMed  Google Scholar 

  35. 35.

    Gilbert RE (2014) Sodium-glucose linked transporter-2 inhibitors: potential for renoprotection beyond blood glucose lowering? Kidney Int 86:693–700

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Kitahara M, Kanaki T, Toyoda K, Miyakoshi C, Tanaka S, Tamaki T, Saito Y (1998) NK-104, a newly developed HMG-CoA reductase inhibitor, suppresses neointimal thickening by inhibiting smooth muscle cell growth and fibronectin production in balloon-injured rabbit carotid artery. Jpn J Pharmacol 77:117–128

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Kim HS, Lee H, Park B, Park S, Kim H, Lee SH, Cho JH, Yoon KH, Cha BY, Kim JH, Choi IY (2016) Comparative analysis of the efficacy of low- and moderate-intensity statins in Korea. Int J Clin Pharmacol Ther 54:864–871

    Article  PubMed  Google Scholar 

  38. 38.

    Li YF, Feng QZ, Gao WQ, Zhang XJ, Huang Y, Chen YD (2015) The difference between Asian and Western in the effect of LDL-C lowering therapy on coronary atherosclerotic plaque: a meta-analysis report. BMC Cardiovasc Disord 15:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Liao JK (2007) Safety and efficacy of statins in Asians. Am J Cardiol 99:410–414

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Karthikeyan G, Teo KK, Islam S, McQueen MJ, Pais P, Wang X, Sato H, Lang CC, Sitthi-Amorn C, Pandey MR, Kazmi K, Sanderson JE, Yusuf S (2009) Lipid profile, plasma apolipoproteins, and risk of a first myocardial infarction among Asians: an analysis from the INTERHEART Study. J Am Coll Cardiol 53:244–253

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Matsushita K, Hibi K, Komura N, Akiyama E, Maejima N, Iwahashi N, Tsukahara K, Kosuge M, Ebina T, Sumita S, Umemura S, Kimura K (2016) Effects of 4 statins on regression of coronary plaque in acute coronary syndrome. Circ J 80:1634–1643

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Kong SH, Koo BK, Moon MK (2017) Efficacy of moderate intensity statins in the treatment of dyslipidemia in korean patients with type 2 diabetes mellitus. Diabetes Metab J 41:23–30

    Article  PubMed  Google Scholar 

  43. 43.

    Peters BJ, Klungel OH, de Boer A, Maitland-van der Zee AH (2009) Genetic determinants of response to statins. Expert Rev Cardiovasc Ther 7:977–983

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Cholesterol Treatment Trialists C, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, Peto R, Barnes EH, Keech A, Simes J, Collins R (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376:1670–1681

    Article  CAS  Google Scholar 

  45. 45.

    Son J-I, Chin SO, Woo J-T (2012) Treatment guidelines for dyslipidemia: summary of the expanded second version. J Lipid Atheroscler 1:45–59

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (No. NRF-2018M3A9A8017949), and by a grant of the Basic Science Research Program through the NRF funded by the Ministry of Education (No. NRF-2017R1D1A1B03034512), Republic of Korea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soon Jun Hong.

Ethics declarations

Conflict of interest

None of the authors have conflict of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lim, J.W., Jeong, H.S., Hong, S.J. et al. Effects of lowest-dose vs. highest-dose pitavastatin on coronary neointimal hyperplasia at 12-month follow-up in type 2 diabetic patients with non-ST elevation acute coronary syndrome: an optical coherence tomography analysis. Heart Vessels 34, 62–73 (2019). https://doi.org/10.1007/s00380-018-1227-0

Download citation

Keywords

  • Acute coronary syndrome
  • Diabetic patients
  • Pitavastatin
  • Optical coherence tomography