Skip to main content
Log in

Responsiveness of internal thoracic arteries to nitroglycerin in patients with renal failure

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Nitroglycerin is commonly used as an antispasmodic for treating spasm of coronary artery bypass grafts. This study investigated whether the presence of renal failure affects reactivity to nitroglycerin in internal thoracic arteries obtained from patients undergoing coronary bypass surgery. The patients were divided into three groups according to estimated glomerular filtration rate (eGFR, mL/min/1.73 m2): without renal failure (60 ≤ eGFR, n = 13), with moderate renal failure (30 ≤ eGFR < 60, n = 10), and with severe renal failure (eGFR < 30, n = 10). Organ chamber technique was used to evaluate concentration-related responses of isolated internal thoracic arteries to vasodilators. Nitroglycerin induced a concentration-dependent relaxation, which was significantly augmented in patients with severe but not moderate renal failure than in those without renal failure. In addition, there was a negative correlation between eGFR and the relaxant efficacy of nitroglycerin (P = 0.016). On the other hand, relaxant responses to BAY 60-2770 (which enhances cGMP generation as with nitroglycerin) were similar among three grades of renal function. An inverse relationship of eGFR to the relaxant efficacy of BAY 60-2770 was not observed, either (P = 0.314). These findings suggest that severe renal failure specifically potentiates nitroglycerin-induced relaxation in internal thoracic artery grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sivalingam S, Levine A, Dunning J (2005) What is the optimal vasodilator for preventing spasm in the left internal mammary artery during coronary arterial bypass grafting? Interact Cardiovasc Thorac Surg 4:365–371

    Article  PubMed  Google Scholar 

  2. Torfgård KE, Ahlner J (1994) Mechanisms of action of nitrates. Cardiovasc Drugs Ther 8:701–717

    Article  PubMed  Google Scholar 

  3. Huraux C, Makita T, Kurz S, Yamaguchi K, Szlam F, Tarpey MM, Wilcox JN, Harrison DG, Levy JH (1999) Superoxide production, risk factors, and endothelium-dependent relaxations in human internal mammary arteries. Circulation 99:53–59

    Article  PubMed  CAS  Google Scholar 

  4. Tawa M, Kinoshita T, Asai T, Suzuki T, Imamura T, Okamura T (2015) Influence of smoking on vascular reactivity to cGMP generators in human internal thoracic arteries. BMC Pharmacol Toxicol 16(Suppl 1):A93

    Article  PubMed Central  Google Scholar 

  5. Tawa M, Kinoshita T, Asai T, Suzuki T, Imamura T, Okamura T (2017) Impact of type 2 diabetes on vascular reactivity to cGMP generators in human internal thoracic arteries. Vascul Pharmacol 91:36–41

    Article  PubMed  CAS  Google Scholar 

  6. Smilowitz NR, Gupta N, Guo Y, Mauricio R, Bangalore S (2017) Management and outcomes of acute myocardial infarction in patients with chronic kidney disease. Int J Cardiol 227:1–7

    Article  PubMed  Google Scholar 

  7. Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97

    Article  PubMed  Google Scholar 

  8. Kleszczewski T, Buzun L, Lisowska A, Modzelewska B (2016) Potassium induced contraction of the internal thoracic artery in vitro is time related: the potential consequences in the analysis of the mechanism of the spasm after coronary artery bypass grafting and in the analysis of the results of in vitro studies. Heart Vessels 31:616–621

    Article  PubMed  Google Scholar 

  9. Kinoshita T, Tawa M, Suzuki T, Aimi Y, Asai T, Okamura T (2017) Endothelial dysfunction of internal thoracic artery graft in patients with chronic kidney disease. J Thorac Cardiovasc Surg 153:317–324

    Article  PubMed  CAS  Google Scholar 

  10. Rhodin JAG (1980) Architecture of the vessel wall. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of physiology, vol 2. American Physiological Society, Bethesda, pp 1–31

    Google Scholar 

  11. Knorr A, Hirth-Dietrich C, Alonso-Alija C, Härter M, Hahn M, Keim Y, Wunder F, Stasch JP (2008) Nitric oxide-independent activation of soluble guanylate cyclase by BAY 60-2770 in experimental liver fibrosis. Arzneimittelforschung 58:71–80

    PubMed  CAS  Google Scholar 

  12. Kurata N, Nakamura S, Mizumura J, Sumi M, Nishimura Y, Yamamoto T, Yasuhara H (1999) Enhancement of nitroglycerin induced blood vessel relaxation in chronic renal failure model rats. Res Commun Mol Pathol Pharmacol 106:23–36

    PubMed  CAS  Google Scholar 

  13. Sorrentino R, Sorrentino L, Pinto A (1993) Effect of some products of protein catabolism on the endothelium-dependent and -independent relaxation of rabbit thoracic aorta rings. J Pharmacol Exp Ther 266:626–633

    PubMed  CAS  Google Scholar 

  14. van der Harst P, Smilde TD, Buikema H, Voors AA, Navis G, van Veldhuisen DJ, van Gilst WH (2006) Vascular function and mild renal impairment in stable coronary artery disease. Arterioscler Thromb Vasc Biol 26:379–384

    Article  PubMed  CAS  Google Scholar 

  15. Sindhu RK, Ehdaie A, Vaziri ND, Roberts CK (2004) Effects of chronic renal failure on caveolin-1, guanylate cyclase and AKT protein expression. Biochim Biophys Acta 1690:231–237

    Article  PubMed  CAS  Google Scholar 

  16. Neubauer R, Wölkart G, Opelt M, Schwarzenegger C, Hofinger M, Neubauer A, Kollau A, Schmidt K, Schrammel A, Mayer B (2015) Aldehyde dehydrogenase-independent bioactivation of nitroglycerin in porcine and bovine blood vessels. Biochem Pharmacol 93:440–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mezzetti A, Lapenna D, Calafiore AM, Proietti-Franceschilli G, Porreca E, De Cesare D, Neri M, Di Ilio C, Cuccurullo F (1992) Glutathione-related enzyme activities and lipoperoxide levels in human internal mammary artery and ascending aorta. Relations with serum lipids. Arterioscler Thromb 12:92–98

    Article  PubMed  CAS  Google Scholar 

  18. Hink U, Daiber A, Kayhan N, Trischler J, Kraatz C, Oelze M, Mollnau H, Wenzel P, Vahl CF, Ho KK, Weiner H, Munzel T (2007) Oxidative inhibition of the mitochondrial aldehyde dehydrogenase promotes nitroglycerin tolerance in human blood vessels. J Am Coll Cardiol 50:2226–2232

    Article  PubMed  CAS  Google Scholar 

  19. Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, Platonov M, Koshal A, Hashimoto K, Campbell WB, Falck JR, Michelakis ED (2003) Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation 107:769–776

    Article  PubMed  CAS  Google Scholar 

  20. Seto SW, Au AL, Poon CC, Zhang Q, Li RW, Yeung JH, Kong SK, Ngai SM, Wan S, Ho HP, Lee SM, Hoi MP, Chan SW, Leung GP, Kwan YW (2013) Acute simvastatin inhibits K ATP channels of porcine coronary artery myocytes. PLoS One 8:e66404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dessì M, Noce A, Dawood KF, Galli F, Taccone-Gallucci M, Fabrini R, Bocedi A, Massoud R, Fucci G, Pastore A, Manca di Villahermosa S, Zingaretti V, Federici G, Ricci G (2012) Erythrocyte glutathione transferase: a potential new biomarker in chronic kidney diseases which correlates with plasma homocysteine. Amino Acids 43:347–354

    Article  PubMed  CAS  Google Scholar 

  22. El-Rashidy FH, Al-Turk WA, Stohs SJ (1984) Glutathione, glutathione reductase and glutathione S-transferase activities in erythrocytes and lymphocytes in chronic renal disease. Res Commun Chem Pathol Pharmacol 44:423–430

    PubMed  CAS  Google Scholar 

  23. Mimic-Oka J, Simic T, Djukanovic L, Stefanovski J, Ramic Z (1992) Glutathione and its associated enzymes in peripheral blood cells in different stages of chronic renal insufficiency. Amino Acids 2:215–224

    PubMed  CAS  Google Scholar 

  24. Galli F, Rovidati S, Benedetti S, Buoncristiani U, Covarelli C, Floridi A, Canestrari F (1999) Overexpression of erythrocyte glutathione S-transferase in uremia and dialysis. Clin Chem 45:1781–1788

    PubMed  CAS  Google Scholar 

  25. Kugiyama K, Yasue H, Okumura K, Ogawa H, Fujimoto K, Nakao K, Yoshimura M, Motoyama T, Inobe Y, Kawano H (1996) Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina. Circulation 94:266–271

    Article  PubMed  CAS  Google Scholar 

  26. Motoyama T, Kawano H, Kugiyama K, Okumura K, Ohgushi M, Yoshimura M, Hirashima O, Yasue H (1997) Flow-mediated, endothelium-dependent dilatation of the brachial arteries is impaired in patients with coronary spastic angina. Am Heart J 133:263–267

    Article  PubMed  CAS  Google Scholar 

  27. Gruhn N, Boesgaard S, Eiberg J, Bang L, Thiis J, Schroeder TV, Aldershvile J (2002) Effects of large conductance Ca(2+)-activated K(+) channels on nitroglycerin-mediated vasorelaxation in humans. Eur J Pharmacol 446:145–150

    Article  PubMed  CAS  Google Scholar 

  28. Wei JY, Reid PR (1979) Quantitative determination of trinitroglycerin in human plasma. Circulation 59:588–592

    Article  PubMed  CAS  Google Scholar 

  29. Sarabu MR, McClung JA, Fass A, Reed GE (1987) Early postoperative spasm in left internal mammary artery bypass grafts. Ann Thorac Surg 44:199–200

    Article  PubMed  CAS  Google Scholar 

  30. Vogt PR, Hess O, Turina MI (1996) Internal mammary artery spasm immediately after grafting to the left anterior descending artery: diagnosis and treatment. Eur Heart J 17:804

    Article  PubMed  CAS  Google Scholar 

  31. He GW, Fan KY, Chiu SW, Chow WH (2000) Injection of vasodilators into arterial grafts through cardiac catheter to relieve spasm. Ann Thorac Surg 69:625–628

    Article  PubMed  CAS  Google Scholar 

  32. He GW (2013) Arterial grafts: clinical classification and pharmacological management. Ann Cardiothorac Surg 2:507–518

    PubMed  PubMed Central  Google Scholar 

  33. Fukuda S, Nakamura Y, Egi K, Fujioka S, Nagasaka S, Minh PN, Toguchi K, Wada T, Izumi-Nakaseko H, Ando K, Mizoue T, Takazawa K, Hosaka S, Sugiyama A (2016) Comparison of direct effects of clinically available vasodilators; nitroglycerin, nifedipine, cilnidipine and diltiazem, on human skeletonized internal mammary harvested with ultrasonic scalpel. Heart Vessels 31:1681–1684

    Article  PubMed  Google Scholar 

  34. He GW, Taggart DP (2016) Spasm in arterial grafts in coronary artery bypass grafting surgery. Ann Thorac Surg 101:1222–1229

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Smoking Research Foundation and by the Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Grant Number 17K15579). The authors wish to thank Dr. Johannes-Peter Stasch (Institute of Cardiovascular Research, Pharma Research Centre, Bayer AG) for the gift of BAY 60-2770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Tawa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawa, M., Kinoshita, T., Asai, T. et al. Responsiveness of internal thoracic arteries to nitroglycerin in patients with renal failure. Heart Vessels 33, 682–687 (2018). https://doi.org/10.1007/s00380-017-1105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-017-1105-1

Keywords

Navigation