Skip to main content

Advertisement

Log in

Abnormal expression of long non-coding RNAs in myocardial infarction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) is the leading cause of fatality worldwide. Our study aimed to investigate the dysregulated long non-coding RNA (lncRNA) in MI and elucidate the mechanism of it in MI. The lncRNA and mRNA expression profiling of the whole left ventricular tissue of MI mice model (8 mice) and Sham group (8 mice) was obtained based on microarray analysis. Differentially expressed lnRNAs/mRNA (DELs/DEMs) were identified in MI. DELs/DEMs co-expression network construction, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted to predict the biological functions of DEMs. Quantitative real-time polymerase chain reaction (qRT-PCR) was subjected to validate the abnormally expressed DELs in left ventricular tissues of MI mice model. Total of 168 DELs (37 up- and 131 down-regulated) and 126 DEMs (87 up- and 39 down-regulated) were identified in MI compared with Sham group. The co-expression network of candidate DELs and DEMs was constructed, which covered 219 nodes and 1775 edges. The qRT-PCR validation results indicated that ENSMUST00000124047 was significantly down-regulated in MI group and AK166279 was significantly up-regulated in MI group. ENSMUST00000121611 and NR_015515 had the up-regulated tendency in MI group compared with Sham group. The DEMs in MI were significantly enriched in 41 signaling pathways including complement and coagulation cascades, cytokine–cytokine receptor interaction and chemokine signaling pathway. The expression profiling of dysregulated DELs in MI was identified. Our results might provide useful information for exploring the pathogenesis mechanism of MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367(9524):1747–1757

    Article  PubMed  Google Scholar 

  2. Davies MJ, Thomas AC (1985) Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53(4):363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolf D, Stachon P, Bode C, Zirlik A (2014) Inflammatory mechanisms in atherosclerosis. Hamostaseologie 34(1):63–71

    Article  CAS  PubMed  Google Scholar 

  4. White HD, Chew DP (2008) Acute myocardial infarction. Lancet 372(9638):570–584

    Article  CAS  PubMed  Google Scholar 

  5. Inami T, Okabe M, Matsushita M, Kobayashi N, Inokuchi K, Hata N, Seino Y, Shimizu W (2016) JAK2 mutation and acute coronary syndrome complicated with stent thrombosis. Heart Vessels 31(10):1714–1716

    Article  PubMed  Google Scholar 

  6. Szpakowicz A, Pepinski W, Waszkiewicz E, Maciorkowska D, Skawronska M, Niemcunowicz-Janica A, Dobrzycki S, Musial WJ, Kaminski KA (2016) The influence of renal function on the association of rs854560 polymorphism of paraoxonase 1 gene with long-term prognosis in patients after myocardial infarction. Heart Vessels 31(1):15–22

    Article  PubMed  Google Scholar 

  7. Kiliszek M, Szpakowicz A, Franaszczyk M, Pepinski W, Waszkiewicz E, Skawronska M, Ploski R, Niemcunowicz-Janica A, Budnik M, Poludniewska D, Musial WJ, Kaminski KA, Opolski G (2016) The 9p21 polymorphism is linked with atrial fibrillation during acute phase of ST-segment elevation myocardial infarction. Heart Vessels 31(10):1590–1594

    Article  PubMed  Google Scholar 

  8. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang W, Tian SS, Hang PZ, Sun C, Guo J, Du ZM (2016) Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol Ther Nucleic Acids 5:e296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Pan X, Fan Y, Hu X, Liu X, Xiang M, Wang J (2015) Dysregulated expression of microRNAs and mRNAs in myocardial infarction. Am J Transl Res 7(11):2291–2304

    PubMed  PubMed Central  Google Scholar 

  11. Tony H, Meng K, Wu B, Yu A, Zeng Q, Yu K, Zhong Y (2015) MicroRNA-208a dysregulates apoptosis genes expression and promotes cardiomyocyte apoptosis during ischemia and its silencing improves cardiac function after myocardial infarction. Mediat Inflamm 2015:479123

    Article  Google Scholar 

  12. Dey BK, Mueller AC, Dutta A (2014) Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Transcription 5(4):e944014

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang K, Liu F, Liu CY, An T, Zhang J, Zhou LY, Wang M, Dong YH, Li N, Gao JN, Zhao YF, Li PF (2016) The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ 23(8):1394–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang K, Liu CY, Zhou LY, Wang JX, Wang M, Zhao B, Zhao WK, Xu SJ, Fan LH, Zhang XJ, Feng C, Wang CQ, Zhao YF, Li PF (2015) APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun 6:6779

    Article  CAS  PubMed  Google Scholar 

  15. Liao J, He Q, Li M, Chen Y, Liu Y, Wang J (2016) LncRNA MIAT: myocardial infarction associated and more. Gene 578(2):158–161

    Article  CAS  PubMed  Google Scholar 

  16. Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51(12):1087–1099

    Article  CAS  PubMed  Google Scholar 

  17. Qu X, Du Y, Shu Y, Gao M, Sun F, Luo S, Yang T, Zhan L, Yuan Y, Chu W, Pan Z, Wang Z, Yang B, Lu Y (2017) MIAT is a pro-fibrotic long non-coding rna governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7:42657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frade AF, Laugier L, Ferreira LR, Baron MA, Benvenuti LA, Teixeira PC, Navarro IC, Cabantous S, Ferreira FM, da Silva Candido D, Gaiotto FA, Bacal F, Pomerantzeff P, Santos RH, Kalil J, Cunha-Neto E, Chevillard C (2016) Myocardial infarction-associated transcript, a long noncoding RNA, is overexpressed during dilated cardiomyopathy due to chronic chagas disease. J Infect Dis 214(1):161–165

    Article  PubMed  Google Scholar 

  19. Zangrando J, Zhang L, Vausort M, Maskali F, Marie PY, Wagner DR, Devaux Y (2014) Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genom 15:460

    Article  Google Scholar 

  20. Li L, Weng Z, Yao C, Song Y, Ma T (2015) Aquaporin-1 deficiency protects against myocardial infarction by reducing both edema and apoptosis in mice. Sci Rep 5:13807

    Article  PubMed  PubMed Central  Google Scholar 

  21. Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  22. Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. Noise reduction in speech processing. Springer, New York, pp 1–4

    Google Scholar 

  23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi N, Goto T, Kusudo T, Moriyama T, Kawada T (2005) The structures and functions of peroxisome proliferator-activated receptors (PPARs). Nihon rinsho 63(4):557–564

    PubMed  Google Scholar 

  26. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5):649–688

    CAS  PubMed  Google Scholar 

  27. Chen MC, Chang JP, Lin YS, Pan KL, Ho WC, Liu WH, Chang TH, Huang YK, Fang CY, Chen CJ (2016) Deciphering the gene expression profile of peroxisome proliferator-activated receptor signaling pathway in the left atria of patients with mitral regurgitation. J Transl Med 14(1):157

    Article  PubMed  PubMed Central  Google Scholar 

  28. Colak D, Alaiya AA, Kaya N, Muiya NP, AlHarazi O, Shinwari Z, Andres E, Dzimiri N (2016) Integrated left ventricular global transcriptome and proteome profiling in human end-stage dilated cardiomyopathy. PLoS One 11(10):e0162669

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu C, Guo Q, Lu M, Li Y (2015) An experimental study on amelioration of dyslipidemia-induced atherosclesis by clematichinenoside through regulating peroxisome proliferator-activated receptor-alpha mediated apolipoprotein A-I, A-II and C-III. Eur J Pharmacol 761:362–374

    Article  CAS  PubMed  Google Scholar 

  30. Peloso GM, Demissie S, Collins D, Mirel DB, Gabriel SB, Cupples LA, Robins SJ, Schaefer EJ, Brousseau ME (2010) Common genetic variation in multiple metabolic pathways influences susceptibility to low HDL-cholesterol and coronary heart disease. J Lipid Res 51(12):3524–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song X, Tian SP, Ju HY, Zhang F, Li YN, Wu F, Yang L (2015) Predictive value of apolipoprotein for coronary atherosclerosis in asymptomatic non-diabetic population. Zhongguo yi xue ke xue yuan xue bao 37(1):55–60

    CAS  PubMed  Google Scholar 

  32. Li H, Han Y, Qi R, Wang Y, Zhang X, Yu M, Tang Y, Wang M, Shu YN, Huang W, Liu X, Rodrigues B, Han M, Liu G (2015) Aggravated restenosis and atherogenesis in ApoCIII transgenic mice but lack of protection in ApoCIII knockouts: the effect of authentic triglyceride-rich lipoproteins with and without ApoCIII. Cardiovasc Res 107(4):579–589

    Article  PubMed  Google Scholar 

  33. Gerritsen G, Rensen PC, Kypreos KE, Zannis VI, Havekes LM, Willems van Dijk K (2005) ApoC-III deficiency prevents hyperlipidemia induced by apoE overexpression. J Lipid Res 46(7):1466–1473

    Article  CAS  PubMed  Google Scholar 

  34. Ali A, Gale RE, Shakoori AR (2016) Detection of FLT3/TKD and IDH1 mutations in Pakistani acute myeloid leukemia patients by denaturing HPLC. J Cell Biochem 118(5):1174–1181

    Article  Google Scholar 

  35. Sironi S, Wagner M, Kuett A, Drolle H, Polzer H, Spiekermann K, Rieger C, Fiegl M (2015) Microenvironmental hypoxia regulates FLT3 expression and biology in AML. Sci Rep 5:17550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. deLapeyriere O, Naquet P, Planche J, Marchetto S, Rottapel R, Gambarelli D, Rosnet O, Birnbaum D (1995) Expression of Flt3 tyrosine kinase receptor gene in mouse hematopoietic and nervous tissues. Differentiation 58(5):351–359

    CAS  PubMed  Google Scholar 

  37. Pfister O, Lorenz V, Oikonomopoulos A, Xu L, Hauselmann SP, Mbah C, Kaufmann BA, Liao R, Wodnar-Filipowicz A, Kuster GM (2014) FLT3 activation improves post-myocardial infarction remodeling involving a cytoprotective effect on cardiomyocytes. J Am Coll Cardiol 63(10):1011–1019

    Article  CAS  PubMed  Google Scholar 

  38. Gu L, Liu W, Yan Y, Su L, Wu G, Liang B, Tan J, Huang G (2014) Influence of the beta-fibrinogen-455G/A polymorphism on development of ischemic stroke and coronary heart disease. Thromb Res 133(6):993–1005

    Article  CAS  PubMed  Google Scholar 

  39. Lovely RS, Yang Q, Massaro JM, Wang J, D’Agostino RB Sr, O’Donnell CJ, Shannon J, Farrell DH (2011) Assessment of genetic determinants of the association of gamma’ fibrinogen in relation to cardiovascular disease. Arterioscler Thromb Vasc Biol 31(10):2345–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD (2012) Interactions between coagulation and complement—their role in inflammation. Semin immunopathol 34(1):151–165

    Article  CAS  PubMed  Google Scholar 

  41. Cao Y, Li R, Li Y, Zhang T, Wu N, Zhang J, Guo Z (2017) Identification of transcription factor-gene regulatory network in acute myocardial infarction. Heart Lung Circ 26(4):343–353

    Article  PubMed  Google Scholar 

  42. Rajasekaran NS, Firpo MA, Milash BA, Weiss RB, Benjamin IJ (2008) Global expression profiling identifies a novel biosignature for protein aggregation R120GCryAB cardiomyopathy in mice. Physiol Genom 35(2):165–172

    Article  CAS  Google Scholar 

  43. Gigante B, Bellis A, Visconti R, Marino M, Morisco C, Trimarco V, Galasso G, Piscione F, De Luca N, Prince JA, de Faire U, Trimarco B (2007) Retrospective analysis of coagulation factor II receptor (F2R) sequence variation and coronary heart disease in hypertensive patients. Arterioscler Thromb Vasc Biol 27(5):1213–1219

    Article  CAS  PubMed  Google Scholar 

  44. Zhou H, Qiu Z, Gao S, Chen Q, Li S, Tan W, Liu X, Wang Z (2016) Integrated analysis of expression profile based on differentially expressed genes in middle cerebral artery occlusion animal models. Int J Mol Sci 17(5):E7776

    Article  Google Scholar 

  45. Wang W, Liu H, Song M, Fang W, Yuan F (2016) Clinical effect of cardiac shock wave therapy on myocardial ischemia in patients with ischemic heart failure. J Cardiovasc Pharmacol Ther 21(4):381–387

    Article  CAS  PubMed  Google Scholar 

  46. Liu J, Wang H, Li J (2016) Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: a double-edged sword. Clin Med Insights Cardiol 10:79–84

    Article  PubMed  PubMed Central  Google Scholar 

  47. Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339(6116):161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fan Y, Xiong X, Zhang Y, Yan D, Jian Z, Xu B, Zhao H (2016) MKEY, a peptide inhibitor of CXCL4-CCL5 heterodimer formation, protects against stroke in mice. J Am Heart Assoc 5(9):e003615

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-jiang Hu.

Ethics declarations

Funding

The work was supported by The National Natural Sciences Foundation of China (Project for Young Scientists, 30800999) and The National Natural Sciences Foundation of China (Project of International Cooperation and Exchanges, 812111369).

Conflict of interest

All of authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (DOCX 14 kb)

Supplementary material 3 (XLSX 24 kb)

Supplementary material 4 (XLSX 17 kb)

Supplementary material 5 (DOCX 13 kb)

380_2017_990_MOESM6_ESM.tif

Figure S1: GO terms and KEGG signaling pathways enrichment of DEMs in MI. (A): molecular function enrichment of GO terms from DEMs; (B) biological process enrichment of GO terms from DEMs; (C): cellular component enrichment of GO terms from DEMs; (D): KEGG signaling pathway enrichment from DEMs. (TIFF 743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Wu, Hd., Xu, Zx. et al. Abnormal expression of long non-coding RNAs in myocardial infarction. Heart Vessels 32, 1253–1261 (2017). https://doi.org/10.1007/s00380-017-0990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-017-0990-7

Keywords

Navigation