Skip to main content

Advertisement

Log in

Optical coherence tomography: influence of contrast concentration on image quality and diagnostic confidence

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

OCT requires intracoronary injection of contrast agent to remove blood from the coronary lumen during data acquisition, which is a possible limitation of this method. Aim of this study was to analyze the influence of iodine concentration on image quality and diagnostic certainty of optical coherence tomography (OCT). OCT sequences acquired using contrast agent with a reduced concentration of 150 mg iodine/ml and a standard concentration of 350 mg iodine/ml were analyzed. Cross-sectional images with a spacing of 10 mm were evaluated regarding image quality and diagnostic confidence. A total of 67 OCT sequences acquired in 24 patients were analyzed. 31 sequences were acquired using contrast agent with a concentration of 150 mg iodine/ml and 36 sequences with a concentration of 350 mg iodine/ml. The percentage of remaining blood streaks in the cross sections was significantly lower for 350 mg iodine/ml compared to 150 mg iodine/ml (19 ± 21 vs. 34 ± 26%, p = 0.013). Contrast with 350 mg iodine/ml showed a significantly higher percentage of completely flushed pullback length as compared to 150 mg iodine/ml (78 ± 24 vs. 58 ± 27%, p = 0.004). Diagnostic certainty was significantly higher for 350 mg iodine/ml than for 150 mg iodine/ml (Likert scale average 1.4 ± 0.7 vs. 2.1 ± 1.2, p < 0.001; Likert scale: 1 = absolutely confident, 2 = confident with slight doubts, 3 = doubtful/not confident, 4 = non-diagnostic). Regarding image quality and diagnostic certainty, contrast agent with a concentration of 350 mg iodine/ml is superior to 150 mg iodine/ml.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Prati F, Kodama T, Romagnoli E, Gatto L, Di Vito L, Ramazzotti V, Chisari A, Marco V, Cremonesi A, Parodi G, Albertucci M, Alfonso F (2015) Suboptimal stent deployment is associated with subacute stent thrombosis: optical coherence tomography insights from a multicenter matched study. From the CLI Foundation investigators: the CLI-THRO study. Am Heart J 169(2):249–256

    Article  PubMed  Google Scholar 

  2. Guagliumi G, Sirbu V, Musumeci G, Gerber R, Biondi-Zoccai G, Ikejima H, Ladich E, Lortkipanidze N, Matiashvili A, Valsecchi O, Virmani R, Stone GW (2012) Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular ultrasound imaging. JACC Cardiovasc Interv 5(1):12–20

    Article  PubMed  Google Scholar 

  3. Alfonso F, Dutary J, Paulo M, Gonzalo N, Pérez-Vizcayno MJ, Jiménez-Quevedo P, Escaned J, Bañuelos C, Hernández R, Macaya C (2012) Combined use of optical coherence tomography and intravascular ultrasound imaging in patients undergoing coronary interventions for stent thrombosis. Heart 98(16):1213–1220

    Article  PubMed  Google Scholar 

  4. Prati F, Regar E, Mintz GS, Arbustini E, Di Mario C, Jang IK, Akasaka T, Costa M, Guagliumi G, Grube E, Ozaki Y, Pinto F, Serruys PW (2010) Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur Heart J 31(4):401–415

    Article  PubMed  Google Scholar 

  5. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, Kauffman CR, Shishkov M, Kang DH, Halpern EF, Tearney GJ (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13):1640–1645

    Article  PubMed  Google Scholar 

  6. Suter MJ, Nadkarni SK, Weisz G, Tanaka A, Jaffer FA, Bouma BE, Tearney GJ (2011) Intravascular optical imaging technology for investigating the coronary artery. JACC Cardiovasc Imaging 4(9):1022–1039

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nakao F, Okamura T, Suetomi T, Yamada J, Nakamura T, Ueda T, Oda T, Kanemoto M, Ikeda Y, Fujii T, Yano M (2016) Differences of side branch jailing between left main-left anterior descending artery stenting and left main-left circumflex artery stenting with Nobori biolimus-eluting stent. Heart Vessels. doi:10.1007/s00380-016-0812-3 (Epub ahead of print)

    Google Scholar 

  8. Sakaguchi M, Hasegawa T, Ehara S, Matsumoto K, Mizutani K, Iguchi T, Ishii H, Nakagawa M, Shimada K, Yoshiyama M (2016) New insights into spotty calcification and plaque rupture in acute coronary syndrome: an optical coherence tomography study. Heart Vessels. doi:10.1007/s00380-016-0820-3 (Epub ahead of print)

    Google Scholar 

  9. Prati F, Romagnoli E, Burzotta F, Limbruno U, Gatto L, La Manna A, Versaci F, Marco V, Di Vito L, Imola F, Paoletti G, Trani C, Tamburino C, Tavazzi L, Mintz GS (2015) Clinical impact of OCT findings during PCI: the CLI-OPCI II study. JACC Cardiovasc Imaging 8(11):1297–1305

    Article  PubMed  Google Scholar 

  10. Wijns W, Shite J, Jones MR, Lee SW, Price MJ, Fabbiocchi F, Barbato E, Akasaka T, Bezerra H, Holmes D (2015) Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. Eur Heart J 36(47):3346–3355

    Article  PubMed  PubMed Central  Google Scholar 

  11. McCullough PA (2008) Contrast-induced acute kidney injury. J Am Coll Cardiol 51(15):1419–1428

    Article  PubMed  Google Scholar 

  12. Brown JR, Solomon RJ, Sarnak MJ, McCullough PA, Splaine ME, Davies L, Ross CS, Dauerman HL, Stender JL, Conley SM, Robb JF, Chaisson K, Boss R, Lambert P, Goldberg DJ, Lucier D, Fedele FA, Kellett MA, Horton S, Phillips WJ, Downs C, Wiseman A, MacKenzie TA, Malenka DJ, Northern New England Cardiovascular Disease Study Group (2014) Reducing contrast-induced acute kidney injury using a regional multicenter quality improvement intervention. Circulation 7(5):693–700

    PubMed  PubMed Central  Google Scholar 

  13. Marenzi G, Lauri G, Assanelli E, Campodonico J, De Metrio M, Marana I, Grazi M, Veglia F, Bartorelli AL (2004) Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol 44(9):1780–1785

    Article  PubMed  Google Scholar 

  14. Bottinor W, Polkampally P, Jovin I (2013) Adverse reactions to iodinated contrast media. Int J Angiol 22(3):149–154

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Räber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G, International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59(12):1058–1072

    Article  PubMed  Google Scholar 

  16. Bouma BE, Tearney GJ, Yabushita H, Shishkov M, Kauffman CR, DeJoseph Gauthier D, MacNeill BD, Houser SL, Aretz HT, Halpern EF, Jang IK (2003) Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89(3):317–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Terashima M, Kaneda H, Suzuki T (2012) The role of optical coherence tomography in coronary intervention. Korean J Intern Med 27(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  18. Waksman R, Kitabata H, Prati F, Albertucci M, Mintz GS (2013) Intravascular ultrasound versus optical coherence tomography guidance. J Am Coll Cardiol 62(17 Suppl):S32–S40

    Article  PubMed  Google Scholar 

  19. Frick K, Michael TT, Alomar M, Mohammed A, Rangan BV, Abdullah S, Grodin J, Hastings JL, Banerjee S, Brilakis ES (2014) Low molecular weight dextran provides similar optical coherence tomography coronary imaging compared to radiographic contrast media. Catheter Cardiovasc Interv 84(5):727–731

    Article  PubMed  Google Scholar 

  20. Ozaki Y, Kitabata H, Tsujioka H, Hosokawa S, Kashiwagi M, Ishibashi K, Komukai K, Tanimoto T, Ino Y, Takarada S, Kubo T, Kimura K, Tanaka A, Hirata K, Mizukoshi M, Imanishi T, Akasaka T (2012) Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ J 76(4):922–927

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Blachutzik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blachutzik, F., Achenbach, S., Nef, H. et al. Optical coherence tomography: influence of contrast concentration on image quality and diagnostic confidence. Heart Vessels 32, 653–659 (2017). https://doi.org/10.1007/s00380-016-0918-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-016-0918-7

Keywords

Navigation