Skip to main content

Advertisement

Log in

Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Epicardial adipose tissue (EAT) volume is reported to be associated with coronary plaques. We evaluated whether non-invasive measurement of EAT thickness by echocardiography can predict high-risk coronary plaque characteristics determined independently by coronary computed tomography (CT) angiography. We enrolled 406 patients (mean age 63 years, 57 % male) referred for 64-slice CT. EAT was measured on the right ventricle free wall from a parasternal long-axis view at the end of systole. High-risk coronary plaques were defined as low-density plaques (<30 Hounsfield units) with positive remodeling (remodeling index >1.05). Patients were divided into thin or thick EAT groups using a cutoff value derived from receiver operator characteristic curve analysis for discriminating high-risk plaques. The receiver operator characteristic cutoff value was 5.8 mm with a sensitivity of 83 % and specificity of 64 % (area under the curve 0.77, 95 % confidence interval 0.70–0.83, p < 0.01). Compared with the thin EAT group, the thick EAT group had a high prevalence of low-density plaques (4 vs. 24 %, p < 0.01), positive remodeling (39 vs. 60 %, p < 0.01), and high-risk plaques (3 vs. 17 %, p < 0.01). Multiple logistic analysis revealed that thick EAT was a significant predictor of high-risk plaques (odds ratio 7.98, 95 % confidence interval 2.77–22.98, p < 0.01) after adjustment for covariates, including conventional risk factors, visceral adipose tissue area, and medications. The measurement of EAT thickness by echocardiography may provide a non-invasive option for predicting high-risk coronary plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ding J, Kritchevsky SB, Harris TB, Burke GL, Detrano RC, Szklo M, Jeffrey Carr J (2008) The association of pericardial fat with calcified coronary plaque. Obesity (Silver Spring) 16(8):1914–1919

    Article  Google Scholar 

  2. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108(20):2460–2466

    Article  PubMed  Google Scholar 

  3. Hirata Y, Kurobe H, Akaike M, Chikugo F, Hori T, Bando Y, Nishio C, Higashida M, Nakaya Y, Kitagawa T, Sata M (2011) Enhanced inflammation in epicardial fat in patients with coronary artery disease. Int Heart J 52(3):139–142

    Article  CAS  PubMed  Google Scholar 

  4. Fitzgibbons TP, Czech MP (2014) Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 3(2):e000582

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nakamura M, Nishikawa H, Mukai S, Setsuda M, Nakajima K, Tamada H, Suzuki H, Ohnishi T, Kakuta Y, Nakano T, Yeung AC (2001) Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 37(1):63–69

    Article  CAS  PubMed  Google Scholar 

  6. Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, Tanimoto T, Matsuo Y, Masho T, Kitabata H, Tsuda K, Tomobuchi Y, Akasaka T (2007) Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol 50(10):933–939

    Article  PubMed  Google Scholar 

  7. Ito T, Nasu K, Terashima M, Ehara M, Kinoshita Y, Kimura M, Tanaka N, Habara M, Tsuchikane E, Suzuki T (2012) The impact of epicardial fat volume on coronary plaque vulnerability: insight from optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging 13(5):408–415

    Article  PubMed  Google Scholar 

  8. Oka T, Yamamoto H, Ohashi N, Kitagawa T, Kunita E, Utsunomiya H, Yamazato R, Urabe Y, Horiguchi J, Awai K, Kihara Y (2012) Association between epicardial adipose tissue volume and characteristics of non-calcified plaques assessed by coronary computed tomographic angiography. Int J Cardiol 161(1):45–49

    Article  PubMed  Google Scholar 

  9. Park JS, Choi SY, Zheng M, Yang HM, Lim HS, Choi BJ, Yoon MH, Hwang GS, Tahk SJ, Shin JH (2013) Epicardial adipose tissue thickness is a predictor for plaque vulnerability in patients with significant coronary artery disease. Atherosclerosis 226(1):134–139

    Article  CAS  PubMed  Google Scholar 

  10. Rajani R, Shmilovich H, Nakazato R, Nakanishi R, Otaki Y, Cheng VY, Hayes SW, Thomson LE, Friedman JD, Slomka PJ, Min JK, Berman DS, Dey D (2013) Relationship of epicardial fat volume to coronary plaque, severe coronary stenosis, and high-risk coronary plaque features assessed by coronary CT angiography. J Cardiovasc Comput Tomogr 7(2):125–132

    Article  PubMed  PubMed Central  Google Scholar 

  11. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, Wong ND, Virmani R, Kondo T, Ozaki Y, Narula J (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54(1):49–57

    Article  PubMed  Google Scholar 

  12. Picard FA, Gueret P, Laissy JP, Champagne S, Leclercq F, Carrie D, Juliard JM, Henry P, Niarra R, Chatellier G, Steg PG (2014) Epicardial adipose tissue thickness correlates with the presence and severity of angiographic coronary artery disease in stable patients with chest pain. PLoS One 9(10):e110005

    Article  PubMed  PubMed Central  Google Scholar 

  13. Toufan M, Azarfarin R, Sadati B, Golzari SE (2012) The association between epicardial adipose tissue and coronary artery disease: an echocardiographic cut-off point. J Cardiovasc Thorac Res 4(2):31–36

    PubMed  PubMed Central  Google Scholar 

  14. Wang T, Liu Q, Liu C, Sun L, Li D, Liu A, Jia R (2014) Correlation of echocardiographic epicardial fat thickness with severity of coronary artery disease in patients with acute myocardial infarction. Echocardiography 31(10):1177–1181

    Article  CAS  PubMed  Google Scholar 

  15. Iacobellis G, Willens HJ (2009) Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr 22(12):1311–1319 (quiz 1417–1418)

    Article  PubMed  Google Scholar 

  16. Osawa K, Miyoshi T, Koyama Y, Hashimoto K, Sato S, Nakamura K, Nishii N, Kohno K, Morita H, Kanazawa S, Ito H (2014) Additional diagnostic value of first-pass myocardial perfusion imaging without stress when combined with 64-row detector coronary CT angiography in patients with coronary artery disease. Heart 100(13):1008–1015

    Article  PubMed  Google Scholar 

  17. Osawa K, Miyoshi T, Sato S, Akagi N, Morimitsu Y, Nakamura K, Kohno K, Kusano K, Kanazawa S, Ito H (2013) Safety and efficacy of a bolus injection of landiolol hydrochloride as a premedication for multidetector-row computed tomography coronary angiography. Circ J 77(1):146–152

    Article  CAS  PubMed  Google Scholar 

  18. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, Roe BB (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4 Suppl):5–40

    Article  CAS  PubMed  Google Scholar 

  19. Yoshizumi T, Nakamura T, Yamane M, Islam AH, Menju M, Yamasaki K, Arai T, Kotani K, Funahashi T, Yamashita S, Matsuzawa Y (1999) Abdominal fat: standardized technique for measurement at CT. Radiology 211(1):283–286

    Article  CAS  PubMed  Google Scholar 

  20. Gokdeniz T, Erkol A, Kalaycioglu E, Cagri Aykan A, Gul I, Boyaci F, Turan B, Ozkan M (2015) Relation of epicardial fat thickness to subclinical right ventricular dysfunction assessed by strain and strain rate imaging in subjects with metabolic syndrome: a two-dimensional speckle tracking echocardiography study. Echocardiography 32:248–256

    Article  PubMed  Google Scholar 

  21. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145(4):247–254

    Article  CAS  PubMed  Google Scholar 

  22. Park JS, Ahn SG, Hwang JW, Lim HS, Choi BJ, Choi SY, Yoon MH, Hwang GS, Tahk SJ, Shin JH (2010) Impact of body mass index on the relationship of epicardial adipose tissue to metabolic syndrome and coronary artery disease in an Asian population. Cardiovasc Diabetol 9:29

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ahn SG, Lim HS, Joe DY, Kang SJ, Choi BJ, Choi SY, Yoon MH, Hwang GS, Tahk SJ, Shin JH (2008) Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart 94(3):e7

    Article  PubMed  Google Scholar 

  24. Eroglu S, Sade LE, Yildirir A, Bal U, Ozbicer S, Ozgul AS, Bozbas H, Aydinalp A, Muderrisoglu H (2009) Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis 19(3):211–217

    Article  CAS  PubMed  Google Scholar 

  25. Gorter PM, van Lindert AS, de Vos AM, Meijs MF, van der Graaf Y, Doevendans PA, Prokop M, Visseren FL (2008) Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis 197(2):896–903

    Article  CAS  PubMed  Google Scholar 

  26. Nakazato R, Dey D, Cheng VY, Gransar H, Slomka PJ, Hayes SW, Thomson LE, Friedman JD, Min JK, Berman DS (2012) Epicardial fat volume and concurrent presence of both myocardial ischemia and obstructive coronary artery disease. Atherosclerosis 221(2):422–426

    Article  CAS  PubMed  Google Scholar 

  27. Hirata Y, Yamada H, Kusunose K, Iwase T, Nishio S, Hayashi S, Bando M, Amano R, Yamaguchi K, Soeki T, Wakatsuki T, Sata M (2015) Clinical utility of measuring epicardial adipose tissue thickness with echocardiography using a high-frequency linear probe in patients with coronary artery disease. J Am Soc Echocardiogr 28(10):1240–1246.e1241

    Article  PubMed  Google Scholar 

  28. Malavazos AE, Di Leo G, Secchi F, Lupo EN, Dogliotti G, Coman C, Morricone L, Corsi MM, Sardanelli F, Iacobellis G (2010) Relation of echocardiographic epicardial fat thickness and myocardial fat. Am J Cardiol 105(12):1831–1835

    Article  PubMed  Google Scholar 

  29. Libby P (2013) Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 368(21):2004–2013

    Article  CAS  PubMed  Google Scholar 

  30. Yamashita K, Yamamoto MH, Ebara S, Okabe T, Saito S, Hoshimoto K, Yakushiji T, Isomura N, Araki H, Obara C, Ochiai M (2014) Association between increased epicardial adipose tissue volume and coronary plaque composition. Heart Vessels 29(5):569–577

    Article  PubMed  Google Scholar 

  31. Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, Higashida M, Mikasa H, Nakaya Y, Takanashi S, Igarashi T, Kitagawa T, Sata M (2011) Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol 58(3):248–255

    Article  CAS  PubMed  Google Scholar 

  32. Mazurek T, Kochman J, Kobylecka M, Wilimski R, Filipiak KJ, Krolicki L, Opolski G (2014) Inflammatory activity of pericoronary adipose tissue may affect plaque composition in patients with acute coronary syndrome without persistent ST-segment elevation: preliminary results. Kardiol Pol 72(5):410–416

    Article  PubMed  Google Scholar 

  33. Bambace C, Sepe A, Zoico E, Telesca M, Olioso D, Venturi S, Rossi A, Corzato F, Faccioli S, Cominacini L, Santini F, Zamboni M (2014) Inflammatory profile in subcutaneous and epicardial adipose tissue in men with and without diabetes. Heart Vessels 29(1):42–48

    Article  PubMed  Google Scholar 

  34. Ohman MK, Luo W, Wang H, Guo C, Abdallah W, Russo HM, Eitzman DT (2011) Perivascular visceral adipose tissue induces atherosclerosis in apolipoprotein E deficient mice. Atherosclerosis 219(1):33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shimabukuro M, Hirata Y, Tabata M, Dagvasumberel M, Sato H, Kurobe H, Fukuda D, Soeki T, Kitagawa T, Takanashi S, Sata M (2013) Epicardial adipose tissue volume and adipocytokine imbalance are strongly linked to human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 33(5):1077–1084

    Article  CAS  PubMed  Google Scholar 

  36. Nakanishi R, Rajani R, Cheng VY, Gransar H, Nakazato R, Shmilovich H, Otaki Y, Hayes SW, Thomson LE, Friedman JD, Slomka PJ, Berman DS, Dey D (2011) Increase in epicardial fat volume is associated with greater coronary artery calcification progression in subjects at intermediate risk by coronary calcium score: a serial study using non-contrast cardiac CT. Atherosclerosis 218(2):363–368

    Article  CAS  PubMed  Google Scholar 

  37. Yerramasu A, Dey D, Venuraju S, Anand DV, Atwal S, Corder R, Berman DS, Lahiri A (2012) Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis 220(1):223–230

    Article  CAS  PubMed  Google Scholar 

  38. Kunita E, Yamamoto H, Kitagawa T, Ohashi N, Oka T, Utsunomiya H, Urabe Y, Tsushima H, Awai K, Budoff MJ, Kihara Y (2014) Prognostic value of coronary artery calcium and epicardial adipose tissue assessed by non-contrast cardiac computed tomography. Atherosclerosis 233(2):447–453

    Article  CAS  PubMed  Google Scholar 

  39. Dagvasumberel M, Shimabukuro M, Nishiuchi T, Ueno J, Takao S, Fukuda D, Hirata Y, Kurobe H, Soeki T, Iwase T, Kusunose K, Niki T, Yamaguchi K, Taketani Y, Yagi S, Tomita N, Yamada H, Wakatsuki T, Harada M, Kitagawa T, Sata M (2012) Gender disparities in the association between epicardial adipose tissue volume and coronary atherosclerosis: a 3-dimensional cardiac computed tomography imaging study in Japanese subjects. Cardiovasc Diabetol 11:106

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mark DB, Berman DS, Budoff MJ, Carr JJ, Gerber TC, Hecht HS, Hlatky MA, Hodgson JM, Lauer MS, Miller JM, Morin RL, Mukherjee D, Poon M, Rubin GD, Schwartz RS (2010) ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 55(23):2663–2699

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Miyoshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tachibana, M., Miyoshi, T., Osawa, K. et al. Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques. Heart Vessels 31, 1758–1766 (2016). https://doi.org/10.1007/s00380-016-0802-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-016-0802-5

Keywords

Navigation